Patents by Inventor Alon Naveh

Alon Naveh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170010648
    Abstract: A processor includes at least one core, a power control unit, and a first interconnect to couple with a peripheral controller. The first interconnect is to provide a first uni-directional communication path for communication of first power management data from the processor to the peripheral controller. Other embodiments are described and claimed.
    Type: Application
    Filed: September 20, 2016
    Publication date: January 12, 2017
    Inventors: Shaun M. Conrad, William Knolla, Douglas R. Moran, Sm M. Rahman, Jawad Haj-Yihia, Alon Naveh, Ohad Falik
  • Publication number: 20170010656
    Abstract: In one embodiment, the present invention is directed to a processor having a plurality of cores and a cache memory coupled to the cores and including a plurality of partitions. The processor can further include a logic to dynamically vary a size of the cache memory based on a memory boundedness of a workload executed on at least one of the cores. Other embodiments are described and claimed.
    Type: Application
    Filed: September 20, 2016
    Publication date: January 12, 2017
    Inventors: Avinash N. Ananthakrishnan, Efraim Rotem, Eliezer Weissmann, Doron Rajwan, Nadav Shulman, Alon Naveh, Hisham Abu-Salah
  • Patent number: 9535487
    Abstract: In one embodiment, the present invention includes a processor having a core and a power controller to control power management features of the processor. The power controller can receive an energy performance bias (EPB) value from the core and access a power-performance tuning table based on the value. Using information from the table, at least one setting of a power management feature can be updated. Other embodiments are described and claimed.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: January 3, 2017
    Assignee: Intel Corporation
    Inventors: Krishnakanth V. Sistla, Jeremy Shrall, Stephen H. Gunther, Efraim Rotem, Alon Naveh, Eliezer Weissmann, Anil Aggarwal, Martin T. Rowland, Ankush Varma, Ian M. Steiner, Matthew Bace, Avinash N. Ananthakrishnan, Jason Brandt
  • Publication number: 20160335020
    Abstract: Embodiments of systems, apparatuses, and methods for energy efficiency and energy conservation including enabling autonomous hardware-based deep power down of devices are described. In one embodiment, a system includes a device, a static memory, and a power control unit coupled with the device and the static memory. The system further includes a deep power down logic of the power control unit to monitor a status of the device, and to transfer the device to a deep power down state when the device is idle. In the system, the device consumes less power when in the deep power down state than in the idle state.
    Type: Application
    Filed: July 25, 2016
    Publication date: November 17, 2016
    Inventors: Inder M. Sodhi, Alon Naveh, Doron Rajway, Ryan D. Wells, Eric C. Samson
  • Patent number: 9477627
    Abstract: A processor includes at least one core, a power control unit, and a first interconnect to couple with a peripheral controller. The first interconnect is to provide a first uni-directional communication path for communication of first power management data from the processor to the peripheral controller. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: October 25, 2016
    Assignee: Intel Corporation
    Inventors: Shaun M. Conrad, William Knolla, Douglas R. Moran, SM M. Rahman, Jawad Haj-Yihia, Alon Naveh, Ohad Falik
  • Patent number: 9471490
    Abstract: In one embodiment, the present invention is directed to a processor having a plurality of cores and a cache memory coupled to the cores and including a plurality of partitions. The processor can further include a logic to dynamically vary a size of the cache memory based on a memory boundedness of a workload executed on at least one of the cores. Other embodiments are described and claimed.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: October 18, 2016
    Assignee: Intel Corporation
    Inventors: Avinash N. Ananthakrishnan, Efraim Rotem, Eliezer Weissmann, Doron Rajwan, Nadav Shulman, Alon Naveh, Hisham Abu-Salah
  • Patent number: 9448829
    Abstract: A heterogeneous processor architecture is described. For example, a processor according to one embodiment of the invention comprises: a set of two or more small physical processor cores; at least one large physical processor core having relatively higher performance processing capabilities and relatively higher power usage relative to the small physical processor cores; virtual-to-physical (V-P) mapping logic to expose the set of two or more small physical processor cores to software through a corresponding set of virtual cores and to hide the at least one large physical processor core from the software.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: September 20, 2016
    Assignee: INTEL CORPORATION
    Inventors: Paolo Narvaez, Ganapati N. Srinivasa, Eugene Gorbatov, Dheeraj R. Subbareddy, Mishali Naik, Alon Naveh, Abirami Prabhakaran, Eliezer Weissmann, Paul Brett, Scott D. Hahn, Andrew J. Herdrich, Gaurav Khanna, Russell J. Fenger, Bryant E. Bigbee, Andrew D. Henroid, David A. Koufaty
  • Publication number: 20160246359
    Abstract: For one disclosed embodiment, a processor comprises a plurality of processor cores to operate at variable performance levels. One of the plurality of processor cores may operate at one time at a performance level different than a performance level at which another one of the plurality of processor cores may operate at the one time. The plurality of processor cores are in a same package. Logic of the processor is to set one or more operating parameters for one or more of the plurality of processor cores. Logic of the processor is to monitor activity of one or more of the plurality of processor cores. Logic of the processor is to constrain power of one or more of the plurality of processor cores based at least in part on the monitored activity. The logic to constrain power is to limit a frequency at which one or more of the plurality of processor cores may be set. Other embodiments are also disclosed.
    Type: Application
    Filed: April 29, 2016
    Publication date: August 25, 2016
    Inventors: EFRAIM ROTEM, OREN LAMDAN, ALON NAVEH
  • Patent number: 9400545
    Abstract: Embodiments of systems, apparatuses, and methods for energy efficiency and energy conservation including enabling autonomous hardware-based deep power down of devices are described. In one embodiment, a system includes a device, a static memory, and a power control unit coupled with the device and the static memory. The system further includes a deep power down logic of the power control unit to monitor a status of the device, and to transfer the device to a deep power down state when the device is idle. In the system, the device consumes less power when in the deep power down state than in the idle state.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: July 26, 2016
    Assignee: Intel Corporation
    Inventors: Inder M. Sodhi, Alon Naveh, Doron Rajwan, Ryan D. Wells, Eric C. Samson
  • Patent number: 9361101
    Abstract: A processor saves micro-architectural contexts to increase the efficiency of code execution and power management. A save instruction is executed to store a micro-architectural state and an architectural state of a processor in a common buffer of a memory upon a context switch that suspends the execution of a process. The micro-architectural state contains performance data resulting from the execution of the process. A restore instruction is executed to retrieve the micro-architectural state and the architectural state from the common buffer upon a resumed execution of the process. Power management hardware then uses the micro-architectural state as an intermediate starting point for the resumed execution.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: June 7, 2016
    Assignee: Intel Corporation
    Inventors: Efraim Rotem, Eliezer Weissmann, Michael Mishaeli, Boris Ginzburg, Alon Naveh
  • Patent number: 9348594
    Abstract: An asymmetric multiprocessor system (ASMP) may comprise computational cores implementing different instruction set architectures and having different power requirements. Program code executing on the ASMP is analyzed by a binary analysis unit to determine what functions are called by the program code and select which of the cores are to execute the program code, or a code segment thereof. Selection may be made to provide for native execution of the program code, to minimize power consumption, and so forth. Control operations based on this selection may then be inserted into the program code, forming instrumented program code. The instrumented program code is then executed by the ASMP.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: May 24, 2016
    Assignee: Intel Corporation
    Inventors: Koichi Yamada, Boris Ginzburg, Wei Li, Ronny Ronen, Esfir Natanzon, Konstantin Levit-Gurevich, Gadi Haber, Alon Naveh, Eliezer Weissmann, Michael Mishaeli
  • Patent number: 9329900
    Abstract: A heterogeneous processor architecture is described.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: May 3, 2016
    Assignee: INTEL CORPORATION
    Inventors: Paolo Narvaez, Ganapati N. Srinivasa, Eugene Gorbatov, Dheeraj R. Subbareddy, Mishali Naik, Alon Naveh, Abirami Prabhakaran, Eliezer Weissmann, David A. Koufaty, Paul Brett, Scott D. Hahn, Andrew J. Herdrich, Ravishankar Iyer, Nagabhushan Chitlur, Inder M. Sodhi, Gaurav Khanna, Russell J. Fenger
  • Publication number: 20160098075
    Abstract: Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
    Type: Application
    Filed: December 11, 2015
    Publication date: April 7, 2016
    Inventors: Sanjeev Jahagirdar, Varghese George, John B. Conrad, Robert Milstrey, Stephen A. Fischer, Alon Naveh, Shai Rotem
  • Publication number: 20160091958
    Abstract: Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
    Type: Application
    Filed: December 4, 2015
    Publication date: March 31, 2016
    Inventors: Sanjeev Jahagirdar, Varghese George, John Conrad, Robert Milstrey, Stephen A. Fischer, Alon Naveh, Shai Rotem
  • Patent number: 9268378
    Abstract: In one embodiment an apparatus includes a temperature sensor to perform a multiplicity of junction temperature measurements for a component in a platform, a controller comprising logic at least a portion of which is in hardware. The logic may receive from the temperature sensor the multiplicity of junction temperature measurements and may instruct the component to perform a first power down action of the component when a junction temperature measurement exceeds a first threshold, and may instruct the component to perform a second power down action of the component when an average junction temperature based on the multiplicity of junction temperature measurements exceeds a second threshold. Other embodiments are disclosed and claimed.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: February 23, 2016
    Assignee: INTEL CORPORATION
    Inventors: Efraim Rotem, Alon Naveh, Doron Rajwan, Nadav Shulman, Eliezer Weissmann
  • Publication number: 20160018882
    Abstract: For one disclosed embodiment, a processor comprises a plurality of processor cores to operate at variable performance levels. One of the plurality of processor cores may operate at one time at a performance level different than a performance level at which another one of the plurality of processor cores may operate at the one time. The plurality of processor cores are in a same package. Logic of the processor is to set one or more operating parameters for one or more of the plurality of processor cores. Logic of the processor is to monitor activity of one or more of the plurality of processor cores. Logic of the processor is to constrain power of one or more of the plurality of processor cores based at least in part on the monitored activity. The logic to constrain power is to limit a frequency at which one or more of the plurality of processor cores may be set. Other embodiments are also disclosed.
    Type: Application
    Filed: September 26, 2015
    Publication date: January 21, 2016
    Inventors: EFRAIM ROTEM, OREN LAMDAN, ALON NAVEH
  • Patent number: 9239789
    Abstract: A method and apparatus for monitor and mwait in a distributed cache architecture is disclosed. One embodiment includes an execution thread sending a MONITOR request for an address to a portion of a distributed cache that stores the data corresponding to that address. At the distributed cache portion the MONITOR request and an associated speculative state is recorded locally for the execution thread. The execution thread then issues an MWAIT instruction for the address. At the distributed cache portion the MWAIT and an associated wait-to-trigger state are recorded for the execution thread. When a write request matching the address is received at the distributed cache portion, a monitor-wake event is then sent to the execution thread and the associated monitor state at the distributed cache portion for that execution thread can be reset to idle.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: January 19, 2016
    Assignee: Intel Corporation
    Inventors: Zeev Offen, Alon Naveh, Iris Sorani
  • Publication number: 20160011975
    Abstract: In one embodiment, the present invention is directed to a processor having a plurality of cores and a cache memory coupled to the cores and including a plurality of partitions. The processor can further include a logic to dynamically vary a size of the cache memory based on a memory boundedness of a workload executed on at least one of the cores. Other embodiments are described and claimed.
    Type: Application
    Filed: August 31, 2015
    Publication date: January 14, 2016
    Inventors: Avinash N. Ananthakrishnan, Efraim Rotem, Eliezer Weissmann, Doron Rajwan, Nadav Shulman, Alon Naveh, Hisham Abu-Salah
  • Patent number: 9235258
    Abstract: Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: January 12, 2016
    Assignee: Intel Corporation
    Inventors: Sanjeev Jahagirdar, Varghese George, John B. Conrad, Robert Milstrey, Stephen A. Fischer, Alon Naveh, Shai Rotem
  • Publication number: 20160004291
    Abstract: In one embodiment, the present invention includes a processor having a core and a power controller to control power management features of the processor. The power controller can receive an energy performance bias (EPB) value from the core and access a power-performance tuning table based on the value. Using information from the table, at least one setting of a power management feature can be updated. Other embodiments are described and claimed.
    Type: Application
    Filed: September 16, 2015
    Publication date: January 7, 2016
    Inventors: Krishnakanth V. Sistla, Jeremy Shrall, Stephen H. Gunther, Efraim Rotem, Alon Naveh, Eliezer Weissmann, Anil Aggarwal, Martin T. Rowland, Ankush Varma, Ian M. Steiner, Matthew Bace, Avinash N. Ananthakrishnan, Jason Brandt