Patents by Inventor Anh Phan

Anh Phan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210091891
    Abstract: According to an aspect, a wireless device identifies system frame numbers (SFNs) that are used for wireless transmissions that use a broadcast channel (BCH) transmission time interval (TTI), where frequency hopping cycles (FHCs) are not aligned with a cycle of the SFNs. The wireless device receives FH information indicating how the FHC used for wireless transmissions relates to the SFN cycle and identifies an SFN timing for the wireless transmissions based on the FH information.
    Type: Application
    Filed: April 18, 2019
    Publication date: March 25, 2021
    Inventors: Mai-Anh Phan, David Sugirtharaj, Emma Wittenmark, Oskar Drugge, Olof Liberg
  • Publication number: 20210091080
    Abstract: An integrated circuit structure comprises a lower device layer that includes a first structure comprising a plurality of PMOS transistors. An upper device layer is formed on the lower device layer, wherein the upper device layer includes a second structure comprising a plurality of NMOS thin-film transistors (TFT).
    Type: Application
    Filed: March 28, 2018
    Publication date: March 25, 2021
    Inventors: Gilbert DEWEY, Ravi PILLARISETTY, Abhishek A. SHARMA, Aaron D. LILAK, Willy RACHMADY, Rishabh MEHANDRU, Kimin JUN, Anh PHAN, Hui Jae YOO, Patrick MORROW, Cheng-Ying HUANG
  • Patent number: 10939412
    Abstract: A base station of a mobile communication network supports continuity of a Multimedia Broadcast Multicast Service, MBMS, for a terminal. The base station receives, from the terminal, an information element informing the base station of a combination of bands, which the terminal supports for carrier aggregation. The terminal supports MBMS reception on any carrier configurable as a serving cell for the terminal according to the information element. The base station derives, from the received information element, MBMS reception capabilities of the terminal. The base station determines a number of carriers, which are configurable by the base station as serving cell of the terminal, such that the terminal is enabled to receive at least one MBMS.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: March 2, 2021
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Mai-Anh Phan, Magnus Stattin, Henning Wiemann
  • Publication number: 20210057413
    Abstract: An integrated circuit structure comprises a lower device layer that includes a first structure comprising a plurality of PMOS transistors. An upper device layer is formed on the lower device layer, wherein the upper device layer includes a second structure comprising a plurality of NMOS transistors having a group III-V material source/drain region.
    Type: Application
    Filed: March 28, 2018
    Publication date: February 25, 2021
    Inventors: Gilbert DEWEY, Ravi PILLARISETTY, Jack T. KAVALIEROS, Aaron D. LILAK, Willy RACHMADY, Rishabh MEHANDRU, Kimin JUN, Anh PHAN, Hui Jae YOO, Patrick MORROW, Cheng-Ying HUANG, Matthew V. METZ
  • Publication number: 20210007609
    Abstract: A method for measuring anatomical dead space in a lung, the method comprising: (a) providing, in a supply of inspired gas, at least one indicator gas for inhalation by a patient during a test, the concentration of the indicator gas being controlled such as to follow a sinewave pattern over successive breaths; (b) measuring, over successive breaths, the flow rate and concentration of the indicator gas during both inspiration and exhalation of the patient; (c) fitting sinewave envelopes to the measured concentration values of the indicator gas over the successive breaths and, from the fitted sinewave envelopes, determining the inspired concentration, the mixed expired concentration, and the end expired concentration in respect of the indicator gas for each breath; and (d) calculating the anatomical dead space for each of a plurality of inspirations based on a conservation-of-mass principle.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 14, 2021
    Inventors: Phi Anh PHAN, Andrew FARMERY
  • Publication number: 20200411428
    Abstract: Disclosed herein are memory devices with a logic region between memory regions. For example, in some embodiments, a memory device may include: a first memory region; a second memory region; a logic region between the first memory region and the second memory region; and a metallization stack, wherein the first memory region is between the logic region and the metallization stack.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Applicant: Intel Corporation
    Inventors: Aaron D. Lilak, Anh Phan, Gilbert W. Dewey, Willy Rachmady, Prashant Majhi, Hui Jae Yoo, Cheng-Ying Huang, Ehren Mannebach
  • Publication number: 20200411430
    Abstract: Embodiments disclosed herein include electronic systems with vias that include a horizontal and vertical portion in order to provide interconnects to stacked components, and methods of forming such systems. In an embodiment, an electronic system comprises a board, a package substrate electrically coupled to the board, and a die electrically coupled to the package substrate. In an embodiment the die comprises a stack of components, and a via adjacent to the stack of components, wherein the via comprises a vertical portion and a horizontal portion.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventors: Ehren MANNEBACH, Aaron LILAK, Hui Jae YOO, Patrick MORROW, Anh PHAN, Willy RACHMADY, Cheng-Ying HUANG, Gilbert DEWEY, Rishabh MEHANDRU
  • Publication number: 20200411651
    Abstract: A device is disclosed. The device includes a first epitaxial region, a second epitaxial region, a first gate region between the first epitaxial region and a second epitaxial region, a first dielectric structure underneath the first epitaxial region, a second dielectric structure underneath the second epitaxial region, a third epitaxial region underneath the first epitaxial region, a fourth epitaxial region underneath the second epitaxial region, and a second gate region between the third epitaxial region and a fourth epitaxial region and below the first gate region. The device also includes, a conductor via extending from the first epitaxial region, through the first dielectric structure and the third epitaxial region, the conductor via narrower at an end of the conductor via that contacts the first epitaxial region than at an opposite end.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Inventors: Ehren MANNEBACH, Aaron LILAK, Hui Jae YOO, Patrick MORROW, Anh PHAN, Willy RACHMADY, Cheng-Ying HUANG, Gilbert DEWEY
  • Publication number: 20200411511
    Abstract: A device is disclosed. The device includes a first semiconductor fin, a first source-drain epitaxial region adjacent a first portion of the first semiconductor fin, a second source-drain epitaxial region adjacent a second portion of the first semiconductor fin, a first gate conductor above the first semiconductor fin, a gate spacer covering the sides of the gate conductor, a second semiconductor fin below the first semiconductor fin, a second gate conductor on a first side of the second semiconductor fin and a third gate conductor on a second side of the second semiconductor fin, a third source-drain epitaxial region adjacent a first portion of the second semiconductor fin, and a fourth source-drain epitaxial region adjacent a second portion of the second semiconductor fin. The device also includes a dielectric isolation structure below the first semiconductor fin and above the second semiconductor fin that separates the first semiconductor fin and the second semiconductor fin.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Inventors: Willy RACHMADY, Cheng-Ying HUANG, Gilbert DEWEY, Aaron LILAK, Patrick MORROW, Anh PHAN, Ehren MANNEBACH, Jack T. KAVALIEROS
  • Publication number: 20200411639
    Abstract: A device is disclosed. The device includes a first gate conductor, a first source-drain region adjacent a first side of the first gate conductor and a second source-drain region adjacent a second side of the first gate conductor, a second gate conductor below the first gate conductor, a third source-drain region below the first source-drain region and adjacent a first side of the second gate conductor and a fourth source-drain region below the second source-drain region and adjacent a second side of the second gate conductor, a first air gap space between the first source-drain region and a first side of the first gate conductor and a second air gap space between the second source-drain region and the second side of the second gate conductor. A planar dielectric layer is formed above the first gate conductor.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Inventors: Ehren MANNEBACH, Aaron LILAK, Anh PHAN, Hui Jae YOO, Patrick MORROW, Cheng-Ying HUANG, Willy RACHMADY, Gilbert DEWEY
  • Publication number: 20200411315
    Abstract: Embodiments herein relate to systems, apparatuses, or processes directed to manufacturing transistors that include a substrate, an epitaxial layer with a first side and a second side opposite the first side, where the first side and the second side of the epitaxial layer are substantially planar, where the second side of the epitaxial layer is substantially parallel to the first side, and where the first side of the epitaxial layer is directly coupled with a side of the substrate. In particular, the epitaxial layer may be adjacent to an oxide layer having a side that is substantially planar, where the second side of the epitaxial layer is adjacent to the side of the oxide layer, and the epitaxial layer was grown and the growth was constrained by the oxide layer.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Inventors: Cheng-Ying HUANG, Gilbert DEWEY, Jack T. KAVALIEROS, Aaron LILAK, Ehren MANNEBACH, Patrick MORROW, Anh PHAN, Willy RACHMADY, Hui Jae YOO
  • Publication number: 20200411433
    Abstract: Interconnect metallization of an integrated circuit device includes a sidewall contact between conductive features. In a stacked device, a terminal interconnect of one device layer may intersect a sidewall of a conductive feature in another device layer or between two devices layers. In some examples, a terminal interconnect coupled to a gate, source, or drain terminal of a finFET in a vertically-stacked device may extend to a depth below a plane of the fin and intersect a sidewall of another interconnect, or another device terminal, that is in another plane of the stacked device. A stop layer below a top surface of the conductive feature may allow for sidewall contact while avoiding interconnect shorts.
    Type: Application
    Filed: February 22, 2018
    Publication date: December 31, 2020
    Applicant: Intel Corporation
    Inventors: Aaron Lilak, Anh Phan, Gilbert Dewey, Willy Rachmady, Patrick Morrow
  • Publication number: 20200411365
    Abstract: Embodiments of the present disclosure may generally relate to systems, apparatus, and/or processes to form volumes of oxide within a fin, such as a Si fin. In embodiments, this may be accomplished by applying a catalytic oxidant material on a side of a fin and then annealing to form a volume of oxide. In embodiments, this may be accomplished by using a plasma implant technique or a beam-line implant technique to introduce oxygen ions into an area of the fin and then annealing to form a volume of oxide. Processes described here may be used manufacture a transistor, a stacked transistor, or a three-dimensional (3-D) monolithic stacked transistor.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Inventors: Cheng-Ying HUANG, Gilbert DEWEY, Jack T. KAVALIEROS, Aaron LILAK, Ehren MANNEBACH, Patrick MORROW, Anh PHAN, Willy RACHMADY, Hui Jae YOO
  • Publication number: 20200395386
    Abstract: A stacked device structure includes a first device structure including a first body that includes a semiconductor material, and a plurality of terminals coupled with the first body. The stacked device structure further includes an insulator between the first device structure and a second device structure. The second device structure includes a second body such as a fin structure directly above the insulator. The second device structure further includes a gate coupled to the fin structure, a spacer including a dielectric material adjacent to the gate, and an epitaxial structure adjacent to a sidewall of the fin structure and between the spacer and the insulator. A metallization structure is coupled to a sidewall surface of the epitaxial structure, and further coupled with one of the terminals of the first device.
    Type: Application
    Filed: March 5, 2018
    Publication date: December 17, 2020
    Applicant: Intel Corporation
    Inventors: Aaron D. Lilak, Anh Phan, Patrick Morrow, Willy Rachmady, Gilbert Dewey, Jessica M. Torres, Kimin Jun, Tristan A. Tronic, Christopher J. Jezewski, Hui Jae Yoo, Robert S. Chau, Chi-Hwa Tsang
  • Publication number: 20200329737
    Abstract: The invention relates to the manufacture of food and food ingredients, more in particular to plant-based fibrous structures for use in vegan products such as meat analogs. Provided is a method for the manufacture of an edible protein-based fibrous structure, comprising contacting an aqueous solution of a non-denatured potato protein with a carboxy methyl cellulose (CMC) having a Mw of at least 150,000 Dalton (Da) to yield a fiber forming solution, which fiber forming solution has a total dry matter (TDM) content in the range of 0.5 to 15%, and wherein said contacting is performed in the pH range of 2 to 5 and while mixing thereby inducing the formation of a potato protein-based edible fibrous structure.
    Type: Application
    Filed: October 31, 2018
    Publication date: October 22, 2020
    Inventors: Sicong ZHU, Vân Anh PHAN, Marc Christiaan LAUS
  • Patent number: 10799125
    Abstract: A method for measuring anatomical dead space in a lung, the method comprising: (a) providing, in a supply of inspired gas, at least one indicator gas for inhalation by a patient during a test, the concentration of the indicator gas being controlled such as to follow a sinewave pattern over successive breaths; (b) measuring, over successive breaths, the flow rate and concentration of the indicator gas during both inspiration and exhalation of the patient; (c) fitting sinewave envelopes to the measured concentration values of the indicator gas over the successive breaths and, from the fitted sinewave envelopes, determining the inspired concentration, the mixed expired concentration, and the end expired concentration in respect of the indicator gas for each breath; and (d) calculating the anatomical dead space for each of a plurality of inspirations based on a conservation-of-mass principle.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: October 13, 2020
    Inventors: Phi Anh Phan, Andrew Farmery, Clive Hahn
  • Publication number: 20200303257
    Abstract: In an embodiment of the present disclosure, a device structure includes a fin structure, a gate on the fin structure, and a source and a drain on the fin structure, where the gate is between the source and the drain. The device structure further includes an insulator layer having a first insulator layer portion adjacent to a sidewall of the source, a second insulator layer portion adjacent to a sidewall of the drain, and a third insulator layer portion therebetween adjacent to a sidewall of the gate, and two or more stressor materials adjacent to the insulator layer. The stressor materials can be tensile or compressively stressed and may strain a channel under the gate.
    Type: Application
    Filed: January 12, 2018
    Publication date: September 24, 2020
    Applicant: Intel Corporation
    Inventors: Aaron D. Lilak, Christopher J. Jezewski, Willy Rachmady, Rishabh Mehandru, Gilbert Dewey, Anh Phan
  • Publication number: 20200294969
    Abstract: Disclosed herein are stacked transistors with dielectric between source/drain materials of different strata, as well as related methods and devices. In some embodiments, an integrated circuit structure may include stacked strata of transistors, wherein a dielectric material is between source/drain materials of adjacent strata, and the dielectric material is conformal on underlying source/drain material.
    Type: Application
    Filed: March 15, 2019
    Publication date: September 17, 2020
    Applicant: Intel Corporation
    Inventors: Willy Rachmady, Cheng-Ying Huang, Ehren Mannebach, Anh Phan, Caleb Shuan Chia Barrett, Jay Prakash Gupta, Nishant Gupta, Kaiwen Hsu, Byungki Jung, Srinivasa Aravind Killampalli, Justin Gary Railsback, Supanee Sukrittanon, Prashant Wadhwa
  • Publication number: 20200295003
    Abstract: Disclosed herein are stacked transistors having device strata with different channel widths, as well as related methods and devices. In some embodiments, an integrated circuit structure may include stacked strata of transistors, wherein different channel materials of different strata have different widths.
    Type: Application
    Filed: March 15, 2019
    Publication date: September 17, 2020
    Applicant: INTEL CORPORATION
    Inventors: Gilbert W. Dewey, Jack T. Kavalieros, Willy Rachmady, Cheng-Ying Huang, Matthew V. Metz, Kimin Jun, Patrick Morrow, Aaron D. Lilak, Ehren Mannebach, Anh Phan
  • Publication number: 20200294998
    Abstract: Backside contact structures include etch selective materials to facilitate backside contact formation. An integrated circuit structure includes a frontside contact region, a device region below the frontside contact region, and a backside contact region below the device region. The device region includes a transistor. The backside contact region includes a first dielectric material under a source or drain region of the transistor, a second dielectric material laterally adjacent to the first dielectric material and under a gate structure of the transistor. A non-conductive spacer is between the first and second dielectric materials. The first and second dielectric materials are selectively etchable with respect to one another and the spacer. The backside contact region may include an interconnect feature that, for instance, passes through the first dielectric material and contacts a bottom side of the source/drain region, and/or passes through the second dielectric material and contacts the gate structure.
    Type: Application
    Filed: March 15, 2019
    Publication date: September 17, 2020
    Applicant: INTEL CORPORATION
    Inventors: AARON D. LILAK, EHREN MANNEBACH, ANH PHAN, RICHARD E. SCHENKER, STEPHANIE A. BOJARSKI, WILLY RACHMADY, PATRICK R. MORROW, JEFFERY D. BIELEFELD, GILBERT DEWEY, HUI JAE YOO