Patents by Inventor Chang-Miao Liu

Chang-Miao Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230352530
    Abstract: The method includes receiving a semiconductor workpiece having active regions extending above a top surface of a semiconductor substrate, forming first dielectric features on first opposing sidewalls of the active regions across a first direction, forming second dielectric features extending between opposing sidewalls of the first dielectric features, and etching portions of the active region to form source/drain trenches. The source/drain trenches expose second opposing sidewalls of the active region. The method further includes recessing the first dielectric features and forming source/drain features in the source/drain trenches and on the exposed second opposing sidewalls of the active region. The source/drain features are partially formed on top surfaces of the first dielectric features.
    Type: Application
    Filed: June 26, 2023
    Publication date: November 2, 2023
    Inventors: Ko-Cheng Liu, Ming-Lung Cheng, Chang-Miao Liu
  • Publication number: 20230352533
    Abstract: The present disclosure relates generally to doping for conductive features in a semiconductor device. In an example, a structure includes an active region of a transistor. The active region includes a source/drain region, and the source/drain region is defined at least in part by a first dopant having a first dopant concentration. The source/drain region further includes a second dopant with a concentration profile having a consistent concentration from a surface of the source/drain region into a depth of the source/drain region. The consistent concentration is greater than the first dopant concentration. The structure further includes a conductive feature contacting the source/drain region at the surface of the source/drain region.
    Type: Application
    Filed: July 12, 2023
    Publication date: November 2, 2023
    Inventors: Su-Hao Liu, Huicheng Chang, Chia-Cheng Chen, Liang-Yin Chen, Kuo-Ju Chen, Chun-Hung Wu, Chang-Miao Liu, Huai-Tei Yang, Lun-Kuang Tan, Wei-Ming You
  • Publication number: 20230352560
    Abstract: A semiconductor structure and a method of forming the same are provided. In an embodiment, an exemplary method includes providing a workpiece having a first active region and a second active region protruding from a substrate, lined by cladding layers, and spaced by a first trench. The method also includes forming a dielectric layer over the workpiece to substantially fill the first trench, forming a mask film directly on a portion of the dielectric layer in the first trench after the forming of the dielectric layer, selectively recessing the dielectric layer after the forming of the mask film to form a dummy fin in and protruding from the first trench, performing an etching process to selectively remove the cladding layers to form second trenches, and forming a gate structure over the workpiece to fill the second trenches.
    Type: Application
    Filed: April 28, 2022
    Publication date: November 2, 2023
    Inventors: Ko-Cheng Liu, Chang-Miao Liu
  • Publication number: 20230335616
    Abstract: Semiconductor devices and methods are provided. An exemplary method according to the present disclosure includes providing fin-shaped active regions protruding from a substrate, forming cladding layers extending along sidewalls of the fin-shaped active regions, forming a dielectric feature over the substrate to fill space between two adjacent cladding layers, forming a gate structure over channel regions of the fin-shaped active regions and over a first portion of the cladding layers, performing an etching process to remove a second portion of the cladding layers not covered by the gate structure to form sidewall spacer trenches, forming a dielectric spacer in each of the sidewall spacer trenches, and after the forming of the dielectric spacers, forming source/drain features.
    Type: Application
    Filed: April 13, 2022
    Publication date: October 19, 2023
    Inventors: Chun-Fai Cheng, Chang-Miao Liu, Ming-Lung Cheng
  • Publication number: 20230335586
    Abstract: A method includes providing a substrate, an isolation structure, and a fin extending from the substrate and through the isolation structure. The fin includes a stack of layers having first and second layers that are alternately stacked and have first and second semiconductor materials respectively. A topmost layer of the stack is one of the second layers. The structure further has a sacrificial gate stack engaging a channel region of the fin. The method further includes forming gate spacers and forming sidewall spacers on sidewalls of the fin in a source/drain region of the fin, wherein the sidewall spacers extend above a bottom surface of a topmost one of the first layers. The method further includes etching the fin in the source/drain region, resulting in a source/drain trench; partially recessing the second layers exposed in the source/drain trench, resulting in gaps; and forming dielectric inner spacers inside the gaps.
    Type: Application
    Filed: April 19, 2022
    Publication date: October 19, 2023
    Inventors: Chun-Fai Cheng, Chang-Miao Liu
  • Patent number: 11769819
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate and a metal gate stack over the semiconductor substrate. The semiconductor device structure also includes a spacer element over a sidewall of the metal gate stack. The spacer element is doped with a dopant, and the dopant reduces a dielectric constant of the spacer element. An atomic concentration of the dopant decreases along a direction from an inner surface of the spacer element adjacent to the metal gate stack towards an outer surface of the spacer element.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: September 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Xusheng Wu, Chang-Miao Liu, Huiling Shang
  • Patent number: 11756835
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed herein. An exemplary semiconductor device comprises a first semiconductor fin and a second semiconductor fin formed over a substrate, wherein lower portions of the first semiconductor fin and the second semiconductor fin are separated by an isolation structure; a first gate stack formed over the first semiconductor fin and a second gate stack formed over the second semiconductor fin; and a separation feature separating the first gate stack and the second gate stack, wherein the separation feature includes a first dielectric layer and a second dielectric layer with an air gap defined therebetween, and a bottom portion of the separation feature being inserted into the isolation structure.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: September 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Lun Min, Xusheng Wu, Chang-Miao Liu
  • Patent number: 11742386
    Abstract: The present disclosure relates generally to doping for conductive features in a semiconductor device. In an example, a structure includes an active region of a transistor. The active region includes a source/drain region, and the source/drain region is defined at least in part by a first dopant having a first dopant concentration. The source/drain region further includes a second dopant with a concentration profile having a consistent concentration from a surface of the source/drain region into a depth of the source/drain region. The consistent concentration is greater than the first dopant concentration. The structure further includes a conductive feature contacting the source/drain region at the surface of the source/drain region.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: August 29, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Su-Hao Liu, Huicheng Chang, Chia-Cheng Chen, Liang-Yin Chen, Kuo-Ju Chen, Chun-Hung Wu, Chang-Miao Liu, Huai-Tei Yang, Lun-Kuang Tan, Wei-Ming You
  • Publication number: 20230261077
    Abstract: An exemplary device includes a stack of channel layers over a substrate extension, a gate, and an insulation layer. The stack of channel layers extends between a first epitaxial source/drain and a second epitaxial source/drain. The gate surrounds each channel layer of the stack of the channel layers. The insulation layer is over the substrate extension, the gate is between a bottommost channel layer of the stack of channel layers and the insulation layer, and the insulation layer is between the gate and the substrate extension. The insulation layer extends between the first epitaxial source/drain and the second epitaxial source/drain, each of which may include an undoped epitaxial layer. A top surface of the undoped epitaxial layer is below a bottom surface of the bottommost channel layer and/or above a top surface of the insulation layer. The insulation layer may wrap the substrate extension and/or have an air gap therein.
    Type: Application
    Filed: June 6, 2022
    Publication date: August 17, 2023
    Inventors: Ko-Cheng Liu, Chang-Miao Liu, Ming-Lung Cheng
  • Patent number: 11728405
    Abstract: A semiconductor structure includes source/drain (S/D) features disposed over a semiconductor substrate, a metal gate stack disposed between the S/D features, where the metal gate stack traverses a channel region between the S/D features, gate spacers disposed on sidewalls of the metal gate stack, and an etch-stop layer (ESL) disposed over the gate spacers and the S/D features. The semiconductor structure further includes an oxide liner disposed on the ESL, where the oxide liner includes silicon oxide and silicon dioxide, and an interlayer dielectric (ILD) layer disposed on the oxide liner, where composition of the ILD layer is different from composition of the oxide liner.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: August 15, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Bwo-Ning Chen, Xusheng Wu, Chang-Miao Liu, Shih-Hao Lin
  • Patent number: 11715803
    Abstract: The present disclosure provides semiconductor devices and methods of forming the same. A semiconductor device of the present disclosure includes a first source/drain feature and a second source/drain feature over a substrate, a plurality of channel members extending between the first source/drain feature and the second source/drain feature, a gate structure wrapping around each of the plurality of channel members, and at least one blocking feature. At least one of the plurality of channel members is isolated from the first source/drain feature and the second source/drain feature by the at least one blocking feature.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: August 1, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Lun Min, Chang-Miao Liu
  • Patent number: 11688647
    Abstract: A semiconductor device includes an N-type fin-like field effect, a P-type fin-like field effect transistor, a shallow trench isolation (STI) structure, a first interlayer dielectric (ILD) layer, and a second ILD layer. The N-type fin-like field effect transistor includes a first semiconductor fin, a gate structure across the first semiconductor fin, and a first source/drain feature in contact with the first semiconductor fin. The P-type fin-like field effect transistor includes a second semiconductor fin, the gate structure across the second semiconductor fin, and a second source/drain feature in contact with the second semiconductor fin. The structure surrounds the first and second semiconductor fins. The first interlayer dielectric (ILD) layer covers the first source/drain feature. The second ILD layer covers the second source/drain feature, wherein a porosity of the second ILD layer is greater than a porosity of the first ILD layer.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: June 27, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Bwo-Ning Chen, Xu-Sheng Wu, Chang-Miao Liu
  • Patent number: 11688768
    Abstract: The device includes a semiconductor substrate and a stack of channel layers on the semiconductor substrate. A top surface of a topmost channel layer extends along a first height relative to the substrate surface. A bottom surface of a bottommost channel layer extends along a second height relative to the substrate surface. The device further includes a gate structure that engages with the stack of channel layers and extending along a first direction. Additionally, the device includes a source/drain feature on first sidewall surfaces of the stack of channel layers and on the substrate, where the first sidewall surfaces extends in parallel to the first direction. Moreover, the source/drain feature has a first width along the first direction at the first height and a second width along the first direction at the second height, and wherein the first width is greater than the second width.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: June 27, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ko-Cheng Liu, Ming-Lung Cheng, Chang-Miao Liu
  • Publication number: 20230200264
    Abstract: A method of forming a semiconductor device includes patterning a mask layer and a semiconductor material to form a first fin and a second fin with a trench interposing the first fin and the second fin. A first liner layer is formed over the first fin, the second fin, and the trench. An insulation material is formed over the first liner layer. A first anneal is performed, followed by a first planarization of the insulation material to form a first planarized insulation material. After which, a top surface of the first planarized insulation material is over a top surface of the mask layer. A second anneal is performed, followed by a second planarization of the first planarized insulation material to form a second planarized insulation material. The insulation material is etched to form shallow trench isolation (STI) regions, and a gate structure is formed over the semiconductor material.
    Type: Application
    Filed: February 22, 2023
    Publication date: June 22, 2023
    Inventors: Chang-Miao Liu, Bwo-Ning Chen, Kei-Wei Chen
  • Publication number: 20230170349
    Abstract: A semiconductor device includes: a first transistor including a first gate structure; a second transistor including a second gate structure and arranged adjacent to the first transistor in a first direction; and a first isolation feature extending in a second direction. The second direction and the first direction are perpendicular. The first isolation feature is between the first gate structure and the second gate structure and in contact with the first gate structure and the second gate structure. The semiconductor structure further includes a first connection structure under the first isolation feature. The first connection structure connects the first gate structure to the second gate structure.
    Type: Application
    Filed: January 5, 2022
    Publication date: June 1, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ko-Cheng LIU, Chang-Miao LIU
  • Patent number: 11600695
    Abstract: A method includes providing a structure having two fins extending from a substrate and an isolation structure adjacent to lower portions of the fins; forming a cladding layer over the isolation structure and over top and sidewalls of the fins; recessing the isolation structure using the cladding layer as an etch mask to expose the substrate; after the recessing of the isolation structure, depositing a seal layer over the substrate, the isolation structure, and the cladding layer; forming a sacrificial plug over the seal layer and between the two fins; and depositing a dielectric top cover over the sacrificial plug and laterally between the two fins.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: March 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ko-Cheng Liu, Ming-Shuan Li, Ming-Lung Cheng, Chang-Miao Liu
  • Publication number: 20230068668
    Abstract: Multi-gate devices and methods for fabricating such are disclosed herein. An exemplary method includes forming a diffusion blocking layer on a semiconductor substrate; forming channel material layers over the diffusion blocking layer; patterning the semiconductor substrate, the channel material layers, and the diffusion blocking layer to form a trench in the semiconductor substrate, thereby defining an active region being adjacent the trench; filling the trench with a dielectric material layer and a solid doping source material layer containing a dopant; and driving the dopant from the solid doping source material layer to the active region, thereby forming an anti-punch-through (APT) feature in the active region.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Inventors: Ko-Cheng Liu, Chang-Miao Liu, Ming-Lung Cheng
  • Publication number: 20230060786
    Abstract: A method includes performing a first etching process on a backside of a substrate to expose a dummy contact structure, performing a first deposition process to deposit a first portion of an oxide layer around the dummy contact structure, performing a second etching process to at least partially remove the first portion of oxide layer, forming a spacer layer around the dummy contact structure, performing a second deposition process to form a second portion of the oxide layer around the spacer layer, removing the spacer layer and the dummy contract structure to leave an opening, and filling the opening with a conductive material to form a conductive plug.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 2, 2023
    Inventors: Bwo-Ning Chen, Xusheng Wu, Yin-Pin Wang, Yuh-Sheng Jean, Chang-Miao Liu
  • Publication number: 20230068354
    Abstract: A method includes providing a substrate including a first semiconductor layer over a dielectric layer, thinning the first semiconductor layer, forming a stack of alternating second semiconductor layers and third semiconductor layers over the thinned first semiconductor layer, forming a fin active region protruding from the substrate including a portion of the thinned first semiconductor layer and the stack of alternating second semiconductor layers and third semiconductor layers, forming isolation features over an exposed portion of the dielectric layer, forming a dummy gate stack over the fin active region, forming a source/drain (S/D) recess in the fin active region adjacent to the dummy gate stack, forming an epitaxial S/D feature in the S/D recess, removing the second semiconductor layers to form openings between the third semiconductor layers, and forming a metal gate stack in the openings and in place of the dummy gate stack.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Inventors: Wei-Lun Min, Ko-Cheng Liu, Chang-Miao Liu
  • Patent number: 11594680
    Abstract: A method of forming a semiconductor device includes patterning a mask layer and a semiconductor material to form a first fin and a second fin with a trench interposing the first fin and the second fin. A first liner layer is formed over the first fin, the second fin, and the trench. An insulation material is formed over the first liner layer. A first anneal is performed, followed by a first planarization of the insulation material to form a first planarized insulation material. After which, a top surface of the first planarized insulation material is over a top surface of the mask layer. A second anneal is performed, followed by a second planarization of the first planarized insulation material to form a second planarized insulation material. The insulation material is etched to form shallow trench isolation (STI) regions, and a gate structure is formed over the semiconductor material.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: February 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chang-Miao Liu, Bwo-Ning Chen, Kei-Wei Chen