Patents by Inventor Chang-Miao Liu

Chang-Miao Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230035791
    Abstract: A semiconductor device structure includes a fin structure formed over a substrate. The structure also includes nanostructures formed over the fin structure. The structure also includes a gate structure wrapped around the nanostructures. The structure also includes a first inner spacer formed beside the gate structure. The structure also includes a second inner spacer formed beside the first inner spacer. The structure also includes spacer layers formed over opposite sides of the gate structure above the nanostructures. The structure also includes source/drain epitaxial structures formed over opposite sides of the fin structure. The second inner spacer is partially embedded in the source/drain epitaxial structures.
    Type: Application
    Filed: July 30, 2021
    Publication date: February 2, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bwo-Ning CHEN, Xusheng WU, Chang-Miao LIU, Chien-Tai CHAN
  • Patent number: 11527444
    Abstract: A dummy gate is formed over a substrate. A sacrificial layer is formed over the dummy gate. An interlayer dielectric (ILD) is formed over the dummy gate and over the sacrificial layer. The dummy gate is replaced with a metal-containing gate. The sacrificial layer is removed. A removal of the sacrificial layer leaves air gaps around the metal-containing gate. The air gaps are then sealed.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: December 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Lun Min, Chang-Miao Liu
  • Publication number: 20220384610
    Abstract: A semiconductor device according to the present disclosure includes a channel member including a first connection portion, a second connection portion and a channel portion disposed between the first connection portion and the second connection portion, a first inner spacer feature disposed over and in contact with the first connection portion, a second inner spacer feature disposed under and in contact with the first connection portion, and a gate structure wrapping around the channel portion of the channel member. A shape of a cross-sectional view of the channel member includes a dog-bone shape. By providing the dog-bone shape channel member, a parasitic resistance of the semiconductor device is advantageously reduced, and performance of the semiconductor device may be significantly improved.
    Type: Application
    Filed: May 27, 2021
    Publication date: December 1, 2022
    Inventors: Chang-Miao Liu, Wei-Lun Min
  • Publication number: 20220384570
    Abstract: A semiconductor structure includes a power rail, a dielectric layer over the power rail, a first source/drain feature over the dielectric layer, a via structure extending through the dielectric layer and electrically connecting the first source/drain feature to the power rail, and two dielectric fins disposed on both sides of the first source/drain feature. Each of the dielectric fins includes two seal spacers, a dielectric bottom cover between bottom portions of the seal spacers, a dielectric top cover between top portions of the seal spacers, and an air gap surrounded by the seal spacers, the dielectric bottom cover, and the dielectric top cover.
    Type: Application
    Filed: August 10, 2022
    Publication date: December 1, 2022
    Inventors: Ko-Cheng Liu, Ming-Shuan Li, Ming-Lung Cheng, Chang-Miao Liu
  • Publication number: 20220367281
    Abstract: A dummy gate is formed over a substrate. A sacrificial layer is formed over the dummy gate. An interlayer dielectric (ILD) is formed over the dummy gate and over the sacrificial layer. The dummy gate is replaced with a metal-containing gate. The sacrificial layer is removed. A removal of the sacrificial layer leaves air gaps around the metal-containing gate. The air gaps are then sealed.
    Type: Application
    Filed: July 22, 2022
    Publication date: November 17, 2022
    Inventors: Wei-Lun Min, Chang-Miao Liu
  • Publication number: 20220367685
    Abstract: A method includes forming a semiconductor substrate having an oxide layer embedded therein, forming a multi-layer (ML) stack including alternating channel layers and non-channel layers over the semiconductor substrate, forming a dummy gate stack over the ML, forming an S/D recess in the ML to expose the oxide layer, forming an epitaxial S/D feature in the S/D recess, removing the non-channel layers from the ML to form openings between the channel layers, where the openings are formed adjacent to the epitaxial S/D feature, and forming a high-k metal gate stack (HKMG) in the openings between the channel layers and in place of the dummy gate stack.
    Type: Application
    Filed: July 28, 2022
    Publication date: November 17, 2022
    Inventors: Xusheng WU, Chang-Miao LIU, Huiling SHANG
  • Publication number: 20220367632
    Abstract: The present disclosure relates generally to doping for conductive features in a semiconductor device. In an example, a structure includes an active region of a transistor. The active region includes a source/drain region, and the source/drain region is defined at least in part by a first dopant having a first dopant concentration. The source/drain region further includes a second dopant with a concentration profile having a consistent concentration from a surface of the source/drain region into a depth of the source/drain region. The consistent concentration is greater than the first dopant concentration. The structure further includes a conductive feature contacting the source/drain region at the surface of the source/drain region.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 17, 2022
    Inventors: Su-Hao Liu, Huicheng Chang, Chia-Cheng Chen, Liang-Yin Chen, Kuo-Ju Chen, Chun-Hung Wu, Chang-Miao Liu, Huai-Tei Yang, Lun-Kuang Tan, Wei-Ming You
  • Publication number: 20220367684
    Abstract: A method includes forming a semiconductor substrate having an oxide layer embedded therein, forming a multi-layer (ML) stack including alternating channel layers and non-channel layers over the semiconductor substrate, forming a dummy gate stack over the ML, forming an S/D recess in the ML to expose the oxide layer, forming an epitaxial S/D feature in the S/D recess, removing the non-channel layers from the ML to form openings between the channel layers, where the openings are formed adjacent to the epitaxial S/D feature, and forming a high-k metal gate stack (HKMG) in the openings between the channel layers and in place of the dummy gate stack.
    Type: Application
    Filed: July 28, 2022
    Publication date: November 17, 2022
    Inventors: Xusheng WU, Chang-Miao LIU, Huiling SHANG
  • Publication number: 20220367677
    Abstract: A method includes forming a silicon liner over a semiconductor device, which includes a dummy gate structure disposed over a substrate and S/D features disposed adjacent to the dummy gate structure, where the dummy gate structure traverses a channel region between the S/D features. The method further includes forming an ILD layer over the silicon liner, which includes elemental silicon, introducing a dopant species to the ILD layer, and subsequently removing the dummy gate structure to form a gate trench. Thereafter, the method proceeds to performing a thermal treatment to the doped ILD layer, thereby oxidizing the silicon liner, and forming a metal gate stack in the gate trench and over the oxidized silicon liner.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 17, 2022
    Inventors: Bwo-Ning CHEN, Xusheng WU, Chang-Miao LIU, Shih-Hao LIN
  • Publication number: 20220344216
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed herein. An exemplary semiconductor device comprises a first semiconductor fin and a second semiconductor fin formed over a substrate, wherein lower portions of the first semiconductor fin and the second semiconductor fin are separated by an isolation structure; a first gate stack formed over the first semiconductor fin and a second gate stack formed over the second semiconductor fin; and a separation feature separating the first gate stack and the second gate stack, wherein the separation feature includes a first dielectric layer and a second dielectric layer with an air gap defined therebetween, and a bottom portion of the separation feature being inserted into the isolation structure.
    Type: Application
    Filed: July 11, 2022
    Publication date: October 27, 2022
    Inventors: Wei-Lun Min, Xusheng Wu, Chang-Miao Liu
  • Publication number: 20220328623
    Abstract: A semiconductor structure includes a semiconductor fin protruding from a substrate, a dielectric fin disposed adjacent and substantially parallel to the semiconductor fin, an epitaxial source/drain (S/D) feature disposed in the semiconductor fin, a dielectric layer disposed between a sidewall of the epitaxial S/D feature and a sidewall of the dielectric fin, and an air gap disposed in the dielectric layer.
    Type: Application
    Filed: April 9, 2021
    Publication date: October 13, 2022
    Inventors: Ko-Cheng Liu, Ming-Lung Cheng, Chang-Miao Liu
  • Publication number: 20220328647
    Abstract: A method includes providing a semiconductor structure including a device fin protruding from a substrate, forming a dummy gate stack over the device fin, forming a first spacer over the device fin and the dummy gate stack, forming a second spacer over the first spacer, forming a dielectric feature adjacent to the second spacer, and replacing the dummy gate stack with a metal gate stack. Thereafter, the method removes the second spacer, thereby forming an air gap between the first spacer and the dielectric feature and wrapping around the device fin. The method then forms a sealing layer over the first spacer and the dielectric feature, thereby sealing the air gap.
    Type: Application
    Filed: July 20, 2021
    Publication date: October 13, 2022
    Inventors: Ko-Cheng Liu, Ming-Lung Cheng, Chang-Miao Liu
  • Publication number: 20220310851
    Abstract: The present disclosure provides semiconductor devices and methods of forming the same. A semiconductor device of the present disclosure includes a first source/drain feature and a second source/drain feature over a substrate, a plurality of channel members extending between the first source/drain feature and the second source/drain feature, a gate structure wrapping around each of the plurality of channel members, and at least one blocking feature. At least one of the plurality of channel members is isolated from the first source/drain feature and the second source/drain feature by the at least one blocking feature.
    Type: Application
    Filed: June 13, 2022
    Publication date: September 29, 2022
    Inventors: Wei-Lun Min, Chang-Miao Liu
  • Publication number: 20220310783
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed. An exemplary semiconductor device comprises a semiconductor stack including semiconductor layers over a substrate, wherein the semiconductor layers are separated from each other and are stacked up along a direction substantially perpendicular to a top surface of the substrate; an isolation structure around a bottom portion of the semiconductor stack and separating active regions; a metal gate structure over a channel region of the semiconductor stack and wrapping each of the semiconductor layers; a gate spacer over a source/drain (S/D) region of the semiconductor stack and along sidewalls of a top portion of the metal gate structure; and an inner spacer over the S/D region of the semiconductor stack and along sidewalls of lower portions of the metal gate structure and wrapping edge portions of each of the semiconductor layers.
    Type: Application
    Filed: March 26, 2021
    Publication date: September 29, 2022
    Inventors: Bwo-Ning Chen, Xusheng Wu, Pin-Ju Liang, Chang-Miao Liu, Shih-Hao Lin
  • Patent number: 11450741
    Abstract: The present disclosure relates generally to doping for conductive features in a semiconductor device. In an example, a structure includes an active region of a transistor. The active region includes a source/drain region, and the source/drain region is defined at least in part by a first dopant having a first dopant concentration. The source/drain region further includes a second dopant with a concentration profile having a consistent concentration from a surface of the source/drain region into a depth of the source/drain region. The consistent concentration is greater than the first dopant concentration. The structure further includes a conductive feature contacting the source/drain region at the surface of the source/drain region.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: September 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Su-Hao Liu, Huicheng Chang, Chia-Cheng Chen, Liang-Yin Chen, Kuo-Ju Chen, Chun-Hung Wu, Chang-Miao Liu, Huai-Tei Yang, Lun-Kuang Tan, Wei-Ming You
  • Patent number: 11444179
    Abstract: A semiconductor structure includes a semiconductor substrate, an oxide layer disposed over the semiconductor substrate, a high-k metal gate structure (HKMG) interleaved with the stack of semiconductor layers, and an epitaxial source/drain (S/D) feature disposed adjacent to the HKMG, wherein a bottom portion of the epitaxial S/D feature is defined by the oxide layer.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: September 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Xusheng Wu, Chang-Miao Liu, Huiling Shang
  • Publication number: 20220285545
    Abstract: The device includes a semiconductor substrate and a stack of channel layers on the semiconductor substrate. A top surface of a topmost channel layer extends along a first height relative to the substrate surface. A bottom surface of a bottommost channel layer extends along a second height relative to the substrate surface. The device further includes a gate structure that engages with the stack of channel layers and extending along a first direction. Additionally, the device includes a source/drain feature on first sidewall surfaces of the stack of channel layers and on the substrate, where the first sidewall surfaces extends in parallel to the first direction. Moreover, the source/drain feature has a first width along the first direction at the first height and a second width along the first direction at the second height, and wherein the first width is greater than the second width.
    Type: Application
    Filed: March 5, 2021
    Publication date: September 8, 2022
    Inventors: Ko-Cheng Liu, Ming-Lung Cheng, Chang-Miao Liu
  • Patent number: 11430890
    Abstract: Examples of an integrated circuit with a strain-generating liner and a method for forming the integrated circuit are provided herein. In some examples, an integrated circuit device includes a substrate, a fin extending from the substrate, and a gate disposed on the fin. The gate has a bottom portion disposed towards the fin and a top portion disposed on the bottom portion. A liner is disposed on a side surface of the bottom portion of the gate such that the top portion of the gate is free of the liner. In some such examples, the liner is configured to produce a channel strain.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: August 30, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Xusheng Wu, Chang-Miao Liu, Huiling Shang
  • Publication number: 20220262918
    Abstract: Field effect transistor and manufacturing method thereof are disclosed. The field effect transistor includes a substrate, fins, a gate structure, a first spacer and a second spacer. The fins protrude from the substrate and extend in a first direction. The gate structure is disposed across and over the fins and extends in a second direction perpendicular to the first direction. The first spacer is disposed on sidewalls of the gate structure. The second spacer is disposed on the first spacer and surrounds the gate structure. The first spacer is fluorine-doped and includes fluorine dopants.
    Type: Application
    Filed: May 9, 2022
    Publication date: August 18, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Lun Min, Chang-Miao Liu, Xu-Sheng Wu
  • Publication number: 20220238661
    Abstract: A method including providing a device including a gate structure and a source/drain feature adjacent to the gate structure. An insulating layer (e.g., CESL, ILD) is formed over the source/drain feature. A trench is etched in the insulating layer to expose a surface of the source/drain feature. A semiconductor material is then formed in the etched trench on the surface of the source/drain feature. The semiconductor material is converted to a silicide.
    Type: Application
    Filed: April 11, 2022
    Publication date: July 28, 2022
    Inventors: Xusheng WU, Chang-Miao LIU, Ying-Keung LEUNG, Huiling SHANG, Youbo LIN