Patents by Inventor Charles H. Dennison

Charles H. Dennison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6753241
    Abstract: Methods of forming contact openings, making electrical interconnections, and related integrated circuitry are described. Integrated circuitry formed through one or more of the inventive methodologies is also described. In one implementation, a conductive runner or line having a contact pad with which electrical communication is desired is formed over a substrate outer surface. A conductive plug is formed laterally proximate the contact pad and together therewith defines an effectively widened contact pad. Conductive material is formed within a contact opening which is received within insulative material over the effectively widened contact pad. In a preferred implementation, a pair of conductive plugs are formed on either side of the contact pad laterally proximate thereof. The conductive plug(s) can extend away from the substrate outer surface a distance which is greater or less than a conductive line height of a conductive line adjacent which the plug is formed.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: June 22, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Charles H. Dennison
  • Publication number: 20040113232
    Abstract: Briefly, in accordance with an embodiment of the invention, a phase change memory and a method to manufacture a phase change memory is provided. The phase change memory may include a phase change material having a bottom portion, a lateral portion, and a top portion. The phase change memory may further include a first electrode material contacting the bottom portion and the lateral portion of the phase change material and a second electrode material contacting the top portion of the phase change material.
    Type: Application
    Filed: December 13, 2002
    Publication date: June 17, 2004
    Inventors: Brian G. Johnson, Charles H. Dennison
  • Publication number: 20040115860
    Abstract: In one embodiment, the present invention may perform a transformation based on existing program operations or operators which may provide encrypting compiler-generated code for compilation with original source code, securing distributable content in hostile environments. As an example, use of compiler analysis and heuristics for pairing variables and identifying encryption/decryption points may protect distributable software, such as the compiled code from automated attacks. In one embodiment, pre-compiler software may dynamically obtain one or more program operators from the source code for applying data transformation based on custom ciphers to encrypt/decrypt data in between references to data variables in a particular portion of the source code, providing encrypting compiler-generated code for mixing with the source code prior to compilation into tamper-resistant object code.
    Type: Application
    Filed: December 13, 2002
    Publication date: June 17, 2004
    Inventors: Brian G. Johnson, Charles H. Dennison
  • Publication number: 20040113136
    Abstract: Briefly, in accordance with an embodiment of the invention, a phase change memory and a method to manufacture a phase change memory is provided. The phase change memory may include an electrode, an adhesive material, an insulating material between the electrode and the adhesive material, wherein a portion of the adhesive material, a portion of the insulating material, and a portion of the electrode form a substantially planar surface. The phase change memory may further include a phase change material on the substantially planar surface and contacting the electrode, the adhesive material, and the insulating material.
    Type: Application
    Filed: December 13, 2002
    Publication date: June 17, 2004
    Inventor: Charles H. Dennison
  • Patent number: 6744088
    Abstract: Briefly, in accordance with an embodiment of the invention, a phase change memory and a method to manufacture a phase change memory is provided. The phase change memory may include an electrode, an adhesive material, an insulating material between the electrode and the adhesive material, wherein a portion of the adhesive material, a portion of the insulating material, and a portion of the electrode form a substantially planar surface. The phase change memory may further include a phase change material on the substantially planar surface and contacting the electrode, the adhesive material, and the insulating material.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: June 1, 2004
    Assignee: Intel Corporation
    Inventor: Charles H. Dennison
  • Publication number: 20040087076
    Abstract: A method comprising forming a sacrificial layer over less than the entire portion of a contact area on a substrate, the sacrificial layer having a thickness defining an edge over the contact area, forming a spacer layer over the spacer, the spacer layer conforming to the shape of the first sacrificial layer such that the spacer layer comprises an edge portion over the contact area adjacent the first sacrificial layer edge, removing the sacrificial layer, while retaining the edge portion of the spacer layer over the contact area, forming a dielectric layer over the contact area, removing the edge portion, and forming a programmable material to the contact area formerly occupied by the edge portion.
    Type: Application
    Filed: October 23, 2003
    Publication date: May 6, 2004
    Inventors: Charles H. Dennison, Guy C. Wicker, Tyler A. Lowrey, Stephen J. Hudgens, Chien Chiang, Daniel Xu
  • Patent number: 6710420
    Abstract: In one aspect, the invention includes an isolation region forming method comprising: a) forming an oxide layer over a substrate; b) forming a nitride layer over the oxide layer, the nitride layer and oxide layer having a pattern of openings extending therethrough to expose portions of the underlying substrate; c) etching the exposed portions of the underlying substrate to form openings extending into the substrate; d) after etching the exposed portions of the underlying substrate, removing portions of the nitride layer while leaving some of the nitride layer remaining over the substrate; and e) after removing portions of the nitride layer, forming oxide within the openings in the substrate, the oxide within the openings forming at least portions of isolation regions.
    Type: Grant
    Filed: September 11, 2002
    Date of Patent: March 23, 2004
    Assignee: Micron Technology, Inc.
    Inventors: David L. Dickerson, Richard H. Lane, Charles H. Dennison, Kunal R. Parekh, Mark Fischer, John K. Zahurak
  • Patent number: 6693014
    Abstract: A double blanket ion implant method for forming diffusion regions in memory array devices, such as a MOSFET access device is disclosed. The method provides a semiconductor substrate with a gate structure formed on its surface. Next, a first pair of diffusion regions are formed in a region adjacent to the channel region by a first blanket ion implantation process. The first blanket ion implantation process has a first energy level and dose. The device is subjected to oxidizing conditions, which form oxidized sidewalls on the gate structure. A second blanket ion implantation process is conducted at the same location as the first ion implantation process adding additional dopant to the diffusion regions. The second blanket ion implantation process has a second energy level and dose. The resultant diffusion regions provide the device with improved static refresh performance over prior art devices.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: February 17, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Mark Fischer, Charles H. Dennison, Fawad Ahmed, Richard H. Lane, John K. Zahurak, Kunal R. Parekh
  • Patent number: 6689649
    Abstract: An electrical interconnection method includes: a) providing two conductive layers separated by an insulating material on a semiconductor wafer; b) etching the conductive layers and insulating material to define and outwardly expose a sidewall of each conductive layer; c) depositing an electrically conductive material over the etched conductive layers and their respective sidewalls; and d) anisotropically etching the conductive material to define an electrically conductive sidewall link electrically interconnecting the two conductive layers. Such is utilizable to make thin film transistors and other circuitry.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: February 10, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Charles H. Dennison, Monte Manning
  • Publication number: 20040023480
    Abstract: The invention includes a semiconductor processing method wherein an insulative mass is formed across a first electrical node and a second electrical node. The mass has a pair of openings extending therethrough to the electrical nodes. The individual openings each have a periphery defined by one of the electrical nodes and at least one sidewall. One of the openings extends to the first electrical node and is a first opening, and the other of the openings extends to the second electrical node and is a second opening. A dielectric material layer is formed within the openings to narrow the openings. Conductive material plugs are formed within the narrowed openings. The conductive material plug within the first opening is a first material plug, and is separated from the first electrical node by the dielectric material; and the conductive plug within the second opening is a second material plug, and is not separated from the second electrical node by the dielectric material.
    Type: Application
    Filed: July 29, 2003
    Publication date: February 5, 2004
    Inventor: Charles H. Dennison
  • Patent number: 6677650
    Abstract: A process for fabricating system-on-chip devices which contain embedded DRAM along with other components such as SRAM or logic circuits is disclosed. Local interconnects, via salicides and tungsten are formed subsequent to polysilicon plugs required for the operation of the DRAM and SRAM or logic. Also disclosed are systems-on-chips MIM/MIS capacitive devices produced by the inventive process.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: January 13, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Mark Fischer, Jigish D. Trivedi, Charles H. Dennison, Todd R. Abbott, Raymond A. Turi
  • Patent number: 6673700
    Abstract: A method comprising forming a sacrificial layer over less than the entire portion of a contact area on a substrate, the sacrificial layer having a thickness defining an edge over the contact area, forming a spacer layer over the spacer, the spacer layer conforming to the shape of the first sacrificial layer such that the spacer layer comprises an edge portion over the contact area adjacent the first sacrificial layer edge, removing the sacrificial layer, while retaining the edge portion of the spacer layer over the contact area, forming a dielectric layer over the contact area, removing the edge portion, and forming a programmable material to the contact area formerly occupied by the edge portion.
    Type: Grant
    Filed: June 30, 2001
    Date of Patent: January 6, 2004
    Assignee: Ovonyx, Inc.
    Inventors: Charles H. Dennison, Guy C. Wicker, Tyler A. Lowrey, Stephen J. Hudgens, Chien Chiang, Daniel Xu
  • Publication number: 20030215988
    Abstract: Embodiments in accordance with the present invention provide methods of forming a dual gated semiconductor-on-insulator (SOI) device. Such methods encompass forming a first transistor structure operatively adjacent a first side of the semiconductor layer of an SOI substrate. Insulator layer material is removed from the second side of the semiconductor layer, between the source/drain contact structures of the first transistor structure and a second transistor structure there formed operatively adjacent the second side of the semiconductor layer and aligned to the first transistor structure.
    Type: Application
    Filed: June 6, 2003
    Publication date: November 20, 2003
    Inventors: John K. Zahurak, Brent Keeth, Charles H. Dennison
  • Publication number: 20030203555
    Abstract: A method comprising forming a first dielectric layer over an electrode formed to a first contact point on a substrate, the electrode having a contact area; patterning the first dielectric layer into a body, a thickness of the first dielectric layer defining aside wall; forming at least one spacer along the side wall of the first dielectric body, the at least one spacer overlying a portion of the contact area; forming a second dielectric layer on the contact area; removing the at least one spacer; and forming a material comprising a second contact point to the contact area. An apparatus comprising a volume of programmable material; a conductor; and an electrode disposed between the volume of programmable material and the conductor, the electrode having a contact area coupled to the volume of programmable material.
    Type: Application
    Filed: May 13, 2003
    Publication date: October 30, 2003
    Inventors: Charles H. Dennison, Alice T. Wang, K. C. Patel, Jenn C. Chow
  • Publication number: 20030197273
    Abstract: A process for forming vertical contacts in the manufacture of integrated circuits, and devices so manufactured. The process eliminates the need for precise mask alignment and allows the etch of the contact hole to be controlled independent of the etch of the interconnect trough. The process includes the steps of: forming an insulating layer on the surface of a substrate; forming an etch stop layer on the surface of the insulating layer; forming an opening in the etch stop layer; etching to a first depth through the opening in the etch stop layer and into the insulating layer to form an interconnect trough; forming a photoresist mask on the surface of the etch stop layer and in the trough; and continuing to etch through the insulating layer until reaching the surface of the substrate to form a contact hole. The above process may be repeated one or more times during the formation of multilevel metal integrated circuits.
    Type: Application
    Filed: May 22, 2003
    Publication date: October 23, 2003
    Inventors: Charles H. Dennison, Trung T. Doan
  • Publication number: 20030174559
    Abstract: A method for storing a temperature threshold in an integrated circuit includes measuring operating parameters of the integrated circuit versus temperature, calculating a maximum temperature at which the integrated circuit performance exceeds predetermined specifications and storing parameters corresponding to the maximum temperature in a comparison circuit in the integrated circuit by selectively blowing fusable devices in the comparison circuit. The fusable devices may be antifuses.
    Type: Application
    Filed: February 24, 2003
    Publication date: September 18, 2003
    Inventors: Christopher B. Cooper, Ming-Bo Liu, Chris G. Martin, Troy A. Manning, Stephen L. Casper, Charles H. Dennison, Brian M. Shirley, Brian L. Brown, Shubneesh Batra
  • Patent number: 6620672
    Abstract: A method of fabricating a memory cell is described in which an access transistor is first formed on an SOI substrate. The access transistor contains source and drain regions in a semiconductor material layer of the substrate and at least one gate stack which includes a gate region electrically connected with a word line. At least one capacitor is formed con a first side of the substrate and is electrically connected to one of the source and drain regions. At least one bit line conductor is formed on the reverse or flip side of the substrate, wherein the bit line conductor is electrically connected to the other of the source and drain regions. Self-aligned contact openings are formed through insulative material over the substrate to provide vias for the electrical connections for each of the capacitor and bit line conductor. These contact openings and the deposited contact material are substantially preserved throughout the entire fabrication process.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: September 16, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Charles H. Dennison, John K. Zahurak
  • Patent number: 6605527
    Abstract: A method comprising forming a first dielectric layer over an electrode formed to a first contact point on a substrate, the electrode having a contact area; patterning the first dielectric layer into a body, a thickness of the first dielectric layer defining a side wall; forming at least one spacer along the side wall of the first dielectric body, the at least one spacer overlying a portion of the contact area; forming a second dielectric layer on the contact area; removing the at least one spacer; and forming a material comprising a second contact point to the contact area. An apparatus comprising a volume of programmable material; a conductor; and an electrode disposed between the volume of programmable material and the conductor, the electrode having a contact area coupled to the volume of programmable material.
    Type: Grant
    Filed: June 30, 2001
    Date of Patent: August 12, 2003
    Assignee: Intel Corporation
    Inventors: Charles H. Dennison, Alice T. Wang, Patel Kanaiyalal Chaturbhai, Jenn C. Chow
  • Patent number: 6605532
    Abstract: A network of electrically conductive plate contacts is provided within the structure of a DRAM chip to enable storage of non-zero voltage levels in each charge storage region. An improved cell or top plate contact provides low contact resistance and improved structural integrity making the contact less prone to removal during subsequent processing steps. A top plate conformally lines a container patterned down into a subregion. A metal contact structure comprises a waist section, a contact leg, and an anchor leg. The contact leg makes contact to the top plate within the container interior. The waist section joins the top of the contact leg to the top of the anchor leg and extends over the edge of the top plate. The anchor leg extends downward through the subregion adjacent to but spaced from the container to anchor the structure in place and provide structural integrity.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: August 12, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Kunal R. Parekh, Mark Fischer, Charles H. Dennison
  • Patent number: 6593192
    Abstract: Embodiments in accordance with the present invention provide methods of forming a dual gated semiconductor-on-insulator (SOI) device. Such methods encompass forming a first transistor structure operatively adjacent a first side of the semiconductor layer of an SOI substrate. Insulator layer material is removed from the second side of the semiconductor layer, between the source/drain contact structures of the first transistor structure and a second transistor structure there formed operatively adjacent the second side of the semiconductor layer and aligned to the first transistor structure.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: July 15, 2003
    Assignee: Micron Technology, Inc.
    Inventors: John K. Zahurak, Brent Keeth, Charles H. Dennison