Patents by Inventor Cheng-Hung Chang

Cheng-Hung Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8263462
    Abstract: A semiconductor structure includes a semiconductor substrate having a first portion and a second portion. A first Fin field-effect transistor (FinFET) is formed over the first portion of the semiconductor substrate, wherein the first FinFET includes a first fin having a first fin height. A second FinFET is formed over the second portion of the semiconductor substrate, wherein the second FinFET includes a second fin having a second fin height different from the first fin height. A top surface of the first fin is substantially level with a top surface of the second fin. A punch-through stopper is underlying and adjoining the first FinFET, wherein the punch-through stopper isolates the first fin from the first portion of the semiconductor substrate.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: September 11, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Ting Hung, Cheng-Hung Chang, Chen-Yi Lee, Chen-Nan Yeh, Chen-Hua Yu
  • Publication number: 20120211807
    Abstract: System and method for reducing contact resistance and prevent variations due to misalignment of contacts is disclosed. A preferred embodiment comprises a non-planar transistor with source/drain regions located within a fin. An inter-layer dielectric overlies the non-planar transistor, and contacts are formed to the source/drain region through the inter-layer dielectric. The contacts preferably come into contact with multiple surfaces of the fin so as to increase the contact area between the contacts and the fin.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 23, 2012
    Applicant: Taiwan Semiconductor Manufacturing Comapny, Ltd.
    Inventors: Chen-Hua YU, Cheng-Hung CHANG, Chen-Nan YEH, Yu-Rung HSU
  • Publication number: 20120194268
    Abstract: A differential voltage sensing method for achieving input impedance matching comprises the steps of: providing a first bio-potential signal to a first variable resistor for generating a first signal; providing a second bio-potential signal to a second variable resistor for generating a second signal; differentially amplifying first and second signals for generating a third signal; selecting an operation band of the third signal for generating first and second logic signals; and dynamically adjusting one of the impedances of the first and second variable resistors according to the first and second logic signals, wherein each of the first and second bio-potential signals has a common signal voltage level and a differential signal voltage level.
    Type: Application
    Filed: April 16, 2012
    Publication date: August 2, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Wen Ying CHANG, CHENG HUNG CHANG, YING JU CHEN
  • Publication number: 20120083107
    Abstract: A semiconductor structure includes a semiconductor substrate; a planar transistor on a first portion of the semiconductor substrate, wherein the first portion of the semiconductor substrate has a first top surface; and a multiple-gate transistor on a second portion of the semiconductor substrate. The second portion of the semiconductor substrate is recessed from the first top surface to form a fin of the multiple-gate transistor. The fin is electrically isolated from the semiconductor substrate by an insulator.
    Type: Application
    Filed: December 8, 2011
    Publication date: April 5, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Hung Chang, Chen-Hua Yu, Chen-Nan Yeh
  • Patent number: 8143114
    Abstract: System and method for reducing contact resistance and prevent variations due to misalignment of contacts is disclosed. A preferred embodiment comprises a non-planar transistor with source/drain regions located within a fin. An inter-layer dielectric overlies the non-planar transistor, and contacts are formed to the source/drain region through the inter-layer dielectric. The contacts preferably come into contact with multiple surfaces of the fin so as to increase the contact area between the contacts and the fin.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: March 27, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chen-Hua Yu, Cheng-Hung Chang, Chen-Nan Yeh, Yu-Rung Hsu
  • Publication number: 20120025313
    Abstract: A method of forming a semiconductor structure includes providing a composite substrate, which includes a bulk silicon substrate and a silicon germanium (SiGe) layer over and adjoining the bulk silicon substrate. A first condensation is performed to the SiGe layer to form a condensed SiGe layer, so that the condensed SiGe layer has a substantially uniform germanium concentration. The condensed SiGe layer and a top portion of the bulk silicon substrate are etched to form a composite fin including a silicon fin and a condensed SiGe fin over the silicon fin. The method further includes oxidizing a portion of the silicon fin; and performing a second condensation to the condensed SiGe fin.
    Type: Application
    Filed: October 13, 2011
    Publication date: February 2, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Hung Chang, Yu-Rung Hsu, Chen-Yi Lee, Shih-Ting Hung, Chen-Nan Yeh, Chen-Hua Yu
  • Patent number: 8106459
    Abstract: A semiconductor structure includes a semiconductor substrate; a planar transistor on a first portion of the semiconductor substrate, wherein the first portion of the semiconductor substrate has a first top surface; and a multiple-gate transistor on a second portion of the semiconductor substrate. The second portion of the semiconductor substrate is recessed from the first top surface to form a fin of the multiple-gate transistor. The fin is electrically isolated from the semiconductor substrate by an insulator.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: January 31, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Hung Chang, Chen-Hua Yu, Chen-Nan Yeh
  • Patent number: 8093883
    Abstract: The invention provides an ion current measurement device for a tool having an ion source. The ion current measurement device comprises an ion collecting cup and a replaceable liner. The ion collecting cup is disposed in the tool and the ion collecting cup possesses a cup opening facing the ion source. The replaceable liner is disposed in the ion collecting cup and the replaceable liner entirely covers a continuous inner sidewall of the ion collecting cup.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: January 10, 2012
    Assignee: United Microelectronics Corp.
    Inventors: Jui-Fang Chen, Cheng-Hung Chang, Chung-Jung Chen, Chien-Kuo Ko, Chi-Chun Yao
  • Patent number: 8063389
    Abstract: A method of performing an ion implantation is provided. A workpiece is installed in the ion implanter. A wafer is provided in a receiving space within an ion implanter. An ion beam is generated by an ion source of the ion implanter. The bombard of the ion beam is blocked and particles generated during or after conducting the step of generating the ion beam are collected by the workpiece.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: November 22, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Jui-Fang Chen, Cheng-Hung Chang, Chung-Jung Chen, Chih-Ming Yang, Chien-Kuo Ko
  • Patent number: 8048723
    Abstract: A method of forming a semiconductor structure includes providing a composite substrate, which includes a bulk silicon substrate and a silicon germanium (SiGe) layer over and adjoining the bulk silicon substrate. A first condensation is performed to the SiGe layer to form a condensed SiGe layer, so that the condensed SiGe layer has a substantially uniform germanium concentration. The condensed SiGe layer and a top portion of the bulk silicon substrate are etched to form a composite fin including a silicon fin and a condensed SiGe fin over the silicon fine. The method further includes oxidizing a portion of the silicon fin; and performing a second condensation to the condensed SiGe fin.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: November 1, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Hung Chang, Yu-Rung Hsu, Chen-Yi Lee, Shih-Ting Hung, Chen-Nan Yeh, Chen-Hua Yu
  • Publication number: 20110223735
    Abstract: A semiconductor structure includes a semiconductor fin on a top surface of a substrate, wherein the semiconductor fin includes a middle section having a first width; and a first and a second end section connected to opposite ends of the middle section, wherein the first and the second end sections each comprises at least a top portion having a second width greater than the first width. The semiconductor structure further includes a gate dielectric layer on a top surface and sidewalls of the middle section of the semiconductor fin; and a gate electrode on the gate dielectric layer.
    Type: Application
    Filed: May 9, 2011
    Publication date: September 15, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: CHEN-HUA YU, YU-RUNG HSU, CHEN-NAN YEH, CHENG-HUNG CHANG
  • Publication number: 20110204971
    Abstract: A differential voltage sensing method for achieving input impedance matching comprises the steps of: providing a first bio-potential signal to a first variable resistor for generating a first signal; providing a second bio-potential signal to a second variable resistor for generating a second signal; differentially amplifying first and second signals for generating a third signal; selecting an operation band of the third signal for generating first and second logic signals; and dynamically adjusting one of the impedances of the first and second variable resistors according to the first and second logic signals, wherein each of the first and second bio-potential signals has a common signal voltage level and a differential signal voltage level.
    Type: Application
    Filed: May 21, 2010
    Publication date: August 25, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Wen Ying CHANG, Cheng Hung Chang, Ying Ju Chen
  • Publication number: 20110171805
    Abstract: System and method for reducing contact resistance and prevent variations due to misalignment of contacts is disclosed. A preferred embodiment comprises a non-planar transistor with source/drain regions located within a fin. An inter-layer dielectric overlies the non-planar transistor, and contacts are formed to the source/drain region through the inter-layer dielectric. The contacts preferably come into contact with multiple surfaces of the fin so as to increase the contact area between the contacts and the fin.
    Type: Application
    Filed: February 15, 2011
    Publication date: July 14, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Cheng-Hung Chang, Chen-Nan Yeh, Yu-Rung Hsu
  • Patent number: 7977772
    Abstract: A semiconductor device and system for a hybrid metal fully silicided (FUSI) gate structure is disclosed. The semiconductor system comprises a PMOS gate structure, the PMOS gate structure including a first high-? dielectric layer, a P-metal layer, a mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-? dielectric layer, the P-metal layer and a fully silicided layer formed on the P-metal layer. The semiconductor system further comprises an NMOS gate structure, the NMOS gate structure includes a second high-? dielectric layer, the fully silicided layer, and the mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-? dielectric and the fully silicided layer.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: July 12, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Cheng-Tung Lin, Cheng-Hung Chang, Hsiang-Yi Wang, Chen-Nan Yeh
  • Publication number: 20110118574
    Abstract: A physiological signal sensing device for examination of human is provided. The physiological signal sensing device includes a light emitting fiber and a light receiving fiber. The light emitting fiber includes a plurality of light emitting portions, wherein the light emitting fiber provides a plurality of sensing beams, and the sensing beams are respectively emitted through the light emitting portions. The light receiving fiber includes a plurality of light receiving portions. The light receiving fiber corresponds to the light emitting fiber. The sensing beams are emitted through the light emitting portions, reflected or refracted by the human. And then the sensing beams are received by the light receiving portions.
    Type: Application
    Filed: March 10, 2010
    Publication date: May 19, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Wen-Ying Chang, Cheng-Hung Chang
  • Patent number: 7939889
    Abstract: A semiconductor structure includes a semiconductor fin on a top surface of a substrate, wherein the semiconductor fin includes a middle section having a first width; and a first and a second end section connected to opposite ends of the middle section, wherein the first and the second end sections each comprises at least a top portion having a second width greater than the first width. The semiconductor structure further includes a gate dielectric layer on a top surface and sidewalls of the middle section of the semiconductor fin; and a gate electrode on the gate dielectric layer.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: May 10, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Yu-Rung Hsu, Chen-Nan Yeh, Cheng-Hung Chang
  • Patent number: 7910994
    Abstract: System and method for reducing contact resistance and prevent variations due to misalignment of contacts is disclosed. A preferred embodiment comprises a non-planar transistor with source/drain regions located within a fin. An inter-layer dielectric overlies the non-planar transistor, and contacts are formed to the source/drain region through the inter-layer dielectric. The contacts preferably come into contact with multiple surfaces of the fin so as to increase the contact area between the contacts and the fin.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: March 22, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Cheng-Hung Chang, Chen-Nan Yeh, Yu-Rung Hsu
  • Publication number: 20100276761
    Abstract: Non-planar transistors and methods of fabrication thereof are described. In an embodiment, a method of forming a non-planar transistor includes forming a channel region on a first portion of a semiconductor fin, the semiconductor fin having a top surface and sidewalls. A gate electrode is formed over the channel region of the semiconductor fin, and an in-situ doped semiconductor layer is grown on the top surface and the sidewalls of the semiconductor fin on opposing sides of the gate electrode using a selective epitaxial growth process. At least a part of the doped semiconductor layer is converted to form a dopant rich region.
    Type: Application
    Filed: January 6, 2010
    Publication date: November 4, 2010
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hang Tung, Chin-Hsiang Lin, Cheng-Hung Chang, Sey-Ping Sun
  • Publication number: 20100221878
    Abstract: A semiconductor device and system for a hybrid metal fully silicided (FUSI) gate structure is disclosed. The semiconductor system comprises a PMOS gate structure, the PMOS gate structure including a first high-? dielectric layer, a P-metal layer, a mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-? dielectric layer, the P-metal layer and a fully silicided layer formed on the P-metal layer. The semiconductor system further comprises an NMOS gate structure, the NMOS gate structure includes a second high-? dielectric layer, the fully silicided layer, and the mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-? dielectric and the fully silicided layer.
    Type: Application
    Filed: May 11, 2010
    Publication date: September 2, 2010
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Cheng-Tung Lin, Cheng-Hung Chang, Hsiang-Yi Wang, Chen-Nan Yeh
  • Publication number: 20100213548
    Abstract: Semiconductor devices with low junction capacitances and methods of fabrication thereof are described. In one embodiment, a method of forming a semiconductor device includes forming isolation regions in a substrate to form active areas. The sidewalls of the active areas are enclosed by the isolation regions. The isolation regions are recessed to expose first parts of the sidewalls of the active areas. The first parts of the sidewalls of the active areas are covered with spacers. The isolation regions are etched to expose second parts of the sidewalls of the active area, the second parts being disposed below the first parts. The active areas are etched through the exposed second parts of the sidewalls to form lateral openings. The lateral openings are filled with a spin on dielectric.
    Type: Application
    Filed: November 13, 2009
    Publication date: August 26, 2010
    Inventors: Cheng-Hung Chang, Yu-Rung Hsu, Chen-Hua Yu