Patents by Inventor Cheng-Yuan Tsai

Cheng-Yuan Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11951569
    Abstract: In some embodiments, the present disclosure relates to a wafer edge trimming apparatus that includes a processing chamber defined by chamber housing. Within the processing chamber is a wafer chuck configured to hold onto a wafer structure. Further, a blade is arranged near an edge of the wafer chuck and configured to remove an edge potion of the wafer structure and to define a new sidewall of the wafer structure. A laser sensor apparatus is configured to direct a laser beam directed toward a top surface of the wafer chuck. The laser sensor apparatus is configured to measure a parameter of an analysis area of the wafer structure. Control circuitry is to the laser sensor apparatus and the blade. The control circuitry is configured to start a damage prevention process when the parameter deviates from a predetermined threshold value by at least a predetermined shift value.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Ming Wu, Yung-Lung Lin, Hau-Yi Hsiao, Sheng-Chau Chen, Cheng-Yuan Tsai
  • Publication number: 20240084455
    Abstract: Some implementations described herein include systems and techniques for fabricating a wafer-on-wafer product using a filled lateral gap between beveled regions of wafers included in a stacked-wafer assembly and along a perimeter region of the stacked-wafer assembly. The systems and techniques include a deposition tool having an electrode with a protrusion that enhances an electromagnetic field along the perimeter region of the stacked-wafer assembly during a deposition operation performed by the deposition tool. Relative to an electromagnetic field generated by a deposition tool not including the electrode with the protrusion, the enhanced electromagnetic field improves the deposition operation so that a supporting fill material may be sufficiently deposited.
    Type: Application
    Filed: February 8, 2023
    Publication date: March 14, 2024
    Inventors: Che Wei YANG, Chih Cheng SHIH, Kuo Liang LU, Yu JIANG, Sheng-Chan LI, Kuo-Ming WU, Sheng-Chau CHEN, Chung-Yi YU, Cheng-Yuan TSAI
  • Publication number: 20240079268
    Abstract: The present disclosure, in some embodiments, relates to a method of forming an integrated chip structure. The method may be performed by forming a plurality of interconnect layers within a first interconnect structure disposed over an upper surface of a first semiconductor substrate. An edge trimming process is performed to remove parts of the first interconnect structure and the first semiconductor substrate along a perimeter of the first semiconductor substrate. The edge trimming process results in the first semiconductor substrate having a recessed surface coupled to the upper surface by way of an interior sidewall disposed directly over the first semiconductor substrate. A dielectric capping structure is formed onto a sidewall of the first interconnect structure after performing the edge trimming process.
    Type: Application
    Filed: November 10, 2023
    Publication date: March 7, 2024
    Inventors: Chih-Hui Huang, Cheng-Hsien Chou, Cheng-Yuan Tsai, Kuo-Ming Wu, Sheng-Chan Li
  • Publication number: 20240064998
    Abstract: A method includes forming a bottom electrode layer, and depositing a first ferroelectric layer over the bottom electrode layer. The first ferroelectric layer is amorphous. A second ferroelectric layer is deposited over the first ferroelectric layer, and the second ferroelectric layer has a polycrystalline structure. The method further includes depositing a third ferroelectric layer over the second ferroelectric layer, with the third ferroelectric layer being amorphous, depositing a top electrode layer over the third ferroelectric layer, and patterning the top electrode layer, the third ferroelectric layer, the second ferroelectric layer, the first ferroelectric layer, and the bottom electrode layer to form a Ferroelectric Random Access Memory cell.
    Type: Application
    Filed: November 3, 2023
    Publication date: February 22, 2024
    Inventors: Bi-Shen Lee, Yi Yang Wei, Hsing-Lien Lin, Hsun-Chung Kuang, Cheng-Yuan Tsai, Hai-Dang Trinh
  • Patent number: 11895933
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming an integrated chip, the method includes forming a bottom electrode over a substrate. A first switching layer is formed on the bottom electrode. The first switching layer comprises a dielectric material doped with a first dopant. A second switching layer is formed over the first switching layer. An atomic percentage of the first dopant in the second switching layer is less than an atomic percentage of the first dopant in the first switching layer. A top electrode is formed over the second switching layer.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: February 6, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fa-Shen Jiang, Cheng-Yuan Tsai, Hai-Dang Trinh, Hsing-Lien Lin, Hsun-Chung Kuang, Bi-Shen Lee
  • Publication number: 20240030258
    Abstract: Doping a liner of a trench isolation structure with fluorine reduces dark current from a photodiode. For example, the fluorine may be added to a passivation layer surrounding a backside deep trench isolation structure. As a result, sensitivity of the photodiode is increased. Additionally, breakdown voltage of the photodiode is increased, and a quantity of white pixels in a pixel array including the photodiode are reduced.
    Type: Application
    Filed: July 22, 2022
    Publication date: January 25, 2024
    Inventors: Chung-Liang CHENG, Sheng-Chan LI, Sheng-Chau CHEN, Chung-Yi YU, Cheng-Yuan TSAI
  • Publication number: 20240030259
    Abstract: Doping a liner of a trench isolation structure with zinc and/or gallium reduces dark current from a photodiode. For example, the zinc and/or gallium may be deposited on a temporary oxide layer and driven into a high-k layer surrounding a deep trench isolation structure and an interface between the high-k layer and surrounding silicon. In another example, the zinc and/or gallium may be deposited on an oxide layer between the high-k layer and surrounding silicon. As a result, sensitivity of the photodiode is increased. Additionally, breakdown voltage of the photodiode is increased, and a quantity of white pixels in a pixel array including the photodiode are reduced.
    Type: Application
    Filed: July 21, 2022
    Publication date: January 25, 2024
    Inventors: Chung-Liang CHENG, Sheng-Chau CHEN, Chung-Yi YU, Cheng-Yuan TSAI
  • Publication number: 20240023344
    Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes a lower electrode structure disposed over one or more interconnects. The one or more interconnects are arranged within a lower inter-level dielectric (ILD) structure over a substrate. A barrier is arranged along a lower surface of the lower electrode structure. The barrier separates the lower electrode structure from the one or more interconnects. An amorphous initiation layer is over the lower electrode layer and a ferroelectric material is on the amorphous initiation layer. The ferroelectric material has a substantially uniform orthorhombic crystalline phase. An upper electrode is over the ferroelectric material.
    Type: Application
    Filed: July 26, 2023
    Publication date: January 18, 2024
    Inventors: Bi-Shen Lee, Yi Yang Wei, Hai-Dang Trinh, Hsun-Chung Kuang, Cheng-Yuan Tsai
  • Patent number: 11862515
    Abstract: The present disclosure, in some embodiments, relates to a method of forming an integrated chip structure. The method may be performed by forming a plurality of interconnect layers within a first interconnect structure disposed over an upper surface of a first semiconductor substrate. An edge trimming process is performed to remove parts of the first interconnect structure and the first semiconductor substrate along a perimeter of the first semiconductor substrate. The edge trimming process results in the first semiconductor substrate having a recessed surface coupled to the upper surface by way of an interior sidewall disposed directly over the first semiconductor substrate. A dielectric capping structure is formed onto a sidewall of the first interconnect structure after performing the edge trimming process.
    Type: Grant
    Filed: August 4, 2022
    Date of Patent: January 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hui Huang, Cheng-Hsien Chou, Cheng-Yuan Tsai, Kuo-Ming Wu, Sheng-Chan Li
  • Patent number: 11855109
    Abstract: A system and method for forming pixels in an image sensor is provided. In an embodiment, a semiconductor device includes an image sensor including a first pixel region and a second pixel region in a substrate, the first pixel region being adjacent to the second pixel region. A first anti-reflection coating is over the first pixel region, the first anti-reflection coating reducing reflection for a first wavelength range of incident light. A second anti-reflection coating is over the second pixel region, the second anti-reflection coating reducing reflection for a second wavelength range of incident light that is different from the first wavelength range.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD
    Inventors: Yen-Chang Chu, Yeur-Luen Tu, Cheng-Yuan Tsai
  • Publication number: 20230413696
    Abstract: Some embodiments relate to a method for forming an integrated chip. The method includes forming a bottom electrode over a substrate. A data storage layer is formed on the bottom electrode. A diffusion barrier layer is formed over the data storage layer. The diffusion barrier layer has a first diffusion activation temperature. A top electrode is formed over the diffusion barrier layer. The top electrode has a second diffusion activation temperature less than the first diffusion activation temperature.
    Type: Application
    Filed: July 31, 2023
    Publication date: December 21, 2023
    Inventors: Albert Zhong, Cheng-Yuan Tsai, Hai-Dang Trinh, Shing-Chyang Pan
  • Publication number: 20230402487
    Abstract: A Deep Trench Isolation (DTI) structure is disclosed. The DTI structures according to embodiments of the present disclosure include a composite passivation layer. In some embodiments, the composite passivation layer includes a hole accumulation layer and a defect repairing layer. The defect repairing layer is disposed between the hole accumulation layer and a semiconductor substrate in which the DTI structure is formed. The defect repairing layer reduces lattice defects in the interface, thus, reducing the density of interface trap (DIT) at the interface. Reduced density of interface trap facilitates strong hole accumulation, thus increasing the flat band voltage. In some embodiments, the hole accumulation layer according to the present disclosure is enhanced by an oxidization treatment.
    Type: Application
    Filed: June 13, 2022
    Publication date: December 14, 2023
    Inventors: Bi-Shen LEE, Chia-Wei HU, Hai-Dang TRINH, Min-Ying TSAI, Ching I LI, Hsun-Chung KUANG, Cheng-Yuan TSAI
  • Patent number: 11844226
    Abstract: A method includes forming a bottom electrode layer, and depositing a first ferroelectric layer over the bottom electrode layer. The first ferroelectric layer is amorphous. A second ferroelectric layer is deposited over the first ferroelectric layer, and the second ferroelectric layer has a polycrystalline structure. The method further includes depositing a third ferroelectric layer over the second ferroelectric layer, with the third ferroelectric layer being amorphous, depositing a top electrode layer over the third ferroelectric layer, and patterning the top electrode layer, the third ferroelectric layer, the second ferroelectric layer, the first ferroelectric layer, and the bottom electrode layer to form a Ferroelectric Random Access Memory cell.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: December 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Bi-Shen Lee, Yi Yang Wei, Hsing-Lien Lin, Hsun-Chung Kuang, Cheng-Yuan Tsai, Hai-Dang Trinh
  • Publication number: 20230389453
    Abstract: A semiconductor device structure is provided. The structure includes a substrate and a data storage element over the substrate. The structure also includes a protective element extending into the data storage element. A bottom surface of the protective element is between a top surface of the data storage element and a bottom surface of the data storage element. The structure further includes a first electrode electrically connected to the data storage element and a second electrode electrically connected to the data storage element.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 30, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hai-Dang TRINH, Hsing-Lien LIN, Cheng-Yuan TSAI
  • Publication number: 20230369023
    Abstract: A tunable plasma exclusion zone in semiconductor fabrication is provided. A semiconductor wafer is provided within a chamber of a plasma processing apparatus between a first plasma electrode and a second plasma electrode. A plasma is generated from a process gas within the chamber and an electric field between the first plasma electrode and the second plasma electrode. The plasma is at least partially excluded from an edge region of the semiconductor wafer by a plasma exclusion zone (PEZ) ring within the chamber. The plasma may be tuned toward a center of the semiconductor wafer by electrically coupling an electrode ring of the PEZ ring to a voltage potential.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 16, 2023
    Inventors: Che Wei Yang, Chih Cheng Shih, Sheng-Chan Li, Cheng-Yuan Tsai, Sheng-Chau Chen
  • Publication number: 20230369368
    Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes a first image sensing element and a second image sensing element arranged over a substrate. A first micro-lens is arranged over the first image sensing element, and a second micro-lens is arranged over the second image sensing element. A composite deep trench isolation structure is arranged between the first and second image sensing elements. The composite deep trench isolation structure includes a lower portion arranged over the substrate and an upper portion arranged over the lower portion. The lower portion includes a first material, and the upper portion includes a second material that has a lower reflectivity than the first material.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Che Wei Yang, Sheng-Chan Li, Tsun-Kai Tsao, Chih-Cheng Shih, Sheng-Chau Chen, Cheng-Yuan Tsai
  • Publication number: 20230354613
    Abstract: In some embodiments, the present disclosure relates to a memory device including a semiconductor substrate, a first electrode disposed over the semiconductor substrate, a ferroelectric layer disposed between the first electrode and the semiconductor substrate, and a first stressor layer separating the first electrode from the ferroelectric layer. The first stressor layer has a coefficient of thermal expansion greater than that of the ferroelectric layer.
    Type: Application
    Filed: June 26, 2023
    Publication date: November 2, 2023
    Inventors: Bi-Shen Lee, Tzu-Yu Lin, Yi-Yang Wei, Hai-Dang Trinh, Hsun-Chung Kuang, Cheng-Yuan Tsai
  • Publication number: 20230345847
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip. A first conductive structure overlies a substrate. A second conductive structure overlies the first conductive structure. A data storage structure is disposed between the first and second conductive structures. The data storage structure includes a first dielectric layer, a second dielectric layer, and a third dielectric layer. Respective bandgaps of the first, second, and third dielectric layers are different from one another.
    Type: Application
    Filed: June 15, 2023
    Publication date: October 26, 2023
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Cheng-Yuan Tsai, Tzu-Chung Tsai, Fa-Shen Jiang
  • Publication number: 20230320103
    Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes one or more interconnect dielectric layers arranged over a substrate. A bottom electrode is disposed over a conductive structure and extends through the one or more interconnect dielectric layers. A top electrode is disposed over the bottom electrode. A ferroelectric layer is disposed between and contacts the bottom electrode and the top electrode. The ferroelectric layer includes a first lower horizontal portion, a first upper horizontal portion arranged above the first lower horizontal portion, and a first sidewall portion coupling the first lower horizontal portion to the first upper horizontal portion.
    Type: Application
    Filed: June 9, 2023
    Publication date: October 5, 2023
    Inventors: Hai-Dang Trinh, Yi Yang Wei, Bi-Shen Lee, Fa-Shen Jiang, Hsun-Chung Kuang, Cheng-Yuan Tsai
  • Publication number: 20230317541
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip structure. The integrated chip structure includes a substrate and an interconnect structure on the substrate. The interconnect structure includes a plurality of interconnects disposed within a dielectric structure. A dielectric protection layer is along a sidewall of the interconnect structure and along a sidewall and a recessed surface of the substrate. A bottommost surface of the dielectric protection layer rests on the recessed surface of the substrate.
    Type: Application
    Filed: June 8, 2023
    Publication date: October 5, 2023
    Inventors: Sheng-Chan Li, Cheng-Hsien Chou, Sheng-Chau Chen, Cheng-Yuan Tsai, Kuo-Ming Wu