Patents by Inventor Cheng-Yuan Tsai

Cheng-Yuan Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220285374
    Abstract: In some embodiments, the present disclosure relates to a memory device including a semiconductor substrate, a first electrode disposed over the semiconductor substrate, a ferroelectric layer disposed between the first electrode and the semiconductor substrate, and a first stressor layer separating the first electrode from the ferroelectric layer. The first stressor layer has a coefficient of thermal expansion greater than that of the ferroelectric layer.
    Type: Application
    Filed: May 3, 2021
    Publication date: September 8, 2022
    Inventors: Bi-Shen Lee, Tzu-Yu Lin, Yi Yang Wei, Hai-Dang Trinh, Hsun-Chung Kuang, Cheng-Yuan Tsai
  • Patent number: 11430951
    Abstract: Various embodiments of the present disclosure are directed towards a memory cell including a data storage structure disposed between a top electrode and a bottom electrode. The data storage structure includes a lower switching layer overlying the bottom electrode, and an upper switching layer overlying the lower switching layer. The lower switching layer comprises a dielectric material doped with a first dopant.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: August 30, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fa-Shen Jiang, Cheng-Yuan Tsai, Hai-Dang Trinh, Hsing-Lien Lin, Hsun-Chung Kuang, Bi-Shen Lee
  • Publication number: 20220270918
    Abstract: A method of making a semiconductor arrangement includes forming a first layer of molecular ions in a first wafer interface region of a first wafer, forming a second layer of molecular ions in a second wafer interface region of a second wafer, forming a first molecular bond connecting the first wafer interface region to the second wafer interface region by applying pressure to at least one of the first wafer or the second wafer in a direction toward the first wafer interface region and the second wafer interface region, and annealing the first wafer and the second wafer to form a second molecular bond connecting the first wafer interface region to the second wafer interface region.
    Type: Application
    Filed: February 22, 2021
    Publication date: August 25, 2022
    Inventors: Ming-Che LEE, Sheng-Chau CHEN, Cheng-Hsien CHOU, Cheng-Yuan TSAI
  • Publication number: 20220271023
    Abstract: A bonded assembly of a first wafer including a first semiconductor substrate and a second wafer including a second semiconductor substrate may be formed. The second semiconductor substrate may be thinned to a first thickness, and an inter-wafer moat trench may be formed at a periphery of the bonded assembly. A protective material layer may be formed in the inter-wafer moat trench and over the backside surface of the second semiconductor substrate. A peripheral portion of the second semiconductor substrate located outside the inter-wafer moat trench may be removed, and a cylindrical portion of the protective material layer laterally surrounds a remaining portion of the bonded assembly. The second semiconductor substrate may be thinned to a second thickness by performing at least one thinning process while the cylindrical portion of the protective material layer protects the remaining portion of the bonded assembly.
    Type: Application
    Filed: February 22, 2021
    Publication date: August 25, 2022
    Inventors: Kuo-Ming WU, Ming-Che LEE, Hau-Yi HSIAO, Cheng-Hsien CHOU, Sheng-Chau CHEN, Cheng-Yuan TSAI
  • Patent number: 11404484
    Abstract: Embodiments of forming an image sensor with organic photodiodes are provided. Trenches are formed in the organic photodiodes to increase the PN-junction interfacial area, which improves the quantum efficiency (QE) of the photodiodes. The organic P-type material is applied in liquid form to fill the trenches. A mixture of P-type materials with different work function values and thickness can be used to meet the desired work function value for the photodiodes.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: August 2, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chin-Wei Liang, Chia-Shiung Tsai, Cheng-Yuan Tsai, Hsing-Lien Lin
  • Publication number: 20220238802
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming an integrated chip. The method includes forming a lower conductive structure over a substrate. A data storage structure is formed on the lower conductive structure. A bandgap of the data storage structure discretely increases or decreases at least two times from a top surface of the data storage structure in a direction towards the substrate. An upper conductive structure is formed on the data storage structure.
    Type: Application
    Filed: April 12, 2022
    Publication date: July 28, 2022
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Cheng-Yuan Tsai, Tzu-Chung Tsai, Fa-Shen Jiang
  • Publication number: 20220223634
    Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes a first image sensing element and a second image sensing element arranged over a substrate. A first micro-lens is arranged over the first image sensing element, and a second micro-lens is arranged over the second image sensing element. A composite deep trench isolation structure is arranged between the first and second image sensing elements. The composite deep trench isolation structure includes a lower portion arranged over the substrate and an upper portion arranged over the lower portion. The lower portion includes a first material, and the upper portion includes a second material that has a higher reflectivity than the first material.
    Type: Application
    Filed: January 8, 2021
    Publication date: July 14, 2022
    Inventors: Che Wei Yang, Sheng-Chan Li, Tsun-Kai Tsao, Chih-Cheng Shih, Sheng-Chau Chen, Cheng-Yuan Tsai
  • Patent number: 11374046
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes: a semiconductor substrate having a front surface and a back surface facing opposite to the front surface; a filling material extending from the front surface into the semiconductor substrate without penetrating through the semiconductor substrate, the filling material including an upper portion and a lower portion, the upper portion being in contact with the semiconductor substrate; and an epitaxial layer lined between the lower portion of the filling material and the semiconductor substrate. An associated manufacturing method is also disclosed.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: June 28, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Sheng-Chan Li, I-Nan Chen, Tzu-Hsiang Chen, Yu-Jen Wang, Yen-Ting Chiang, Cheng-Hsien Chou, Cheng-Yuan Tsai
  • Patent number: 11367623
    Abstract: A method of forming a memory device is provided. In some embodiments, a memory cell is formed over a substrate, and a sidewall spacer layer is formed along the memory cell. A lower etch stop layer is formed on the sidewall spacer layer, and an upper dielectric layer is formed on the lower etch stop layer. A first etching process is performed to etch back the upper dielectric layer using the lower etch stop layer as an etch endpoint.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: June 21, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-Chau Chen, Cheng-Tai Hsiao, Cheng-Yuan Tsai, Hsun-Chung Kuang, Yao-Wen Chang
  • Publication number: 20220189928
    Abstract: A structure includes first and second substrates, first and second stress buffer layers, and a post-passivation interconnect (PPI) structure. The first and second substrates include first and second semiconductor substrates and first and second interconnect structures on the first and second semiconductor substrates, respectively. The second interconnect structure is on a first side of the second semiconductor substrate. The first substrate is bonded to the second substrate at a bonding interface. A via extends at least through the second semiconductor substrate into the second interconnect structure. The first stress buffer layer is on a second side of the second semiconductor substrate opposite from the first side of the second semiconductor substrate. The PPI structure is on the first stress buffer layer and is electrically coupled to the via. The second stress buffer layer is on the PPI structure and the first stress buffer layer.
    Type: Application
    Filed: March 7, 2022
    Publication date: June 16, 2022
    Inventors: Chen-Fa Lu, Cheng-Yuan Tsai, Yeur-Luen Tu, Chia-Shiung Tsai
  • Patent number: 11362271
    Abstract: The present disclosure relates to a memory device. The memory device includes a first electrode over a substrate and a second electrode over the substrate. A data storage structure is disposed between the first electrode and the second electrode. The data storage structure includes one or more metals having non-zero concentrations that change as a distance from the substrate increases.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: June 14, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hai-Dang Trinh, Cheng-Yuan Tsai, Hsing-Lien Lin, Wen-Ting Chu
  • Publication number: 20220173290
    Abstract: A method for manufacturing reflective structure is provided. The method includes the operations as follows. A metallization structure is received. A plurality of conductive pads are formed over the metallization structure. A plurality of dielectric stacks are formed over the conductive pads, respectively, wherein the thicknesses of the dielectric stacks are different. The dielectric stacks are isolated by forming a plurality of trenches over a plurality of intervals between each two adjacent dielectric stacks.
    Type: Application
    Filed: February 18, 2022
    Publication date: June 2, 2022
    Inventors: CHIA-HUA LIN, YAO-WEN CHANG, CHII-MING WU, CHENG-YUAN TSAI, EUGENE I-CHUN CHEN, TZU-CHUNG TSAI
  • Patent number: 11309491
    Abstract: Various embodiments of the present disclosure are directed towards a memory cell including a data storage structure. A top electrode overlies a bottom electrode. The data storage structure is disposed between the top electrode and the bottom electrode. The data storage structure includes a first data storage layer, a second data storage layer, and a third data storage layer. The second data storage layer is disposed between the first and third data storage layers. The second data storage layer has a lower bandgap than the third data storage layer. The first data storage layer has a lower bandgap than the second data storage layer.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: April 19, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Cheng-Yuan Tsai, Tzu-Chung Tsai, Fa-Shen Jiang
  • Publication number: 20220115317
    Abstract: Metal-insulator-metal (MIM) capacitor, an integrated semiconductor device having a MIM capacitor and methods of making. The MIM capacitor includes a first metal layer, a second metal layer and a dielectric layer located between the second metal layer and the first metal layer. The first metal layer, the second metal layer and the dielectric layer may be formed in a comb structure, wherein the comb structure include a first tine structure and at least a second tine structure.
    Type: Application
    Filed: October 13, 2020
    Publication date: April 14, 2022
    Inventors: Paul YANG, Tsun-Kai TSAO, Sheng-Chau CHEN, Sheng-Chan LI, Cheng-Yuan TSAI
  • Patent number: 11302663
    Abstract: A bump structure with a barrier layer, and a method for manufacturing the bump structure, are provided. In some embodiments, the bump structure comprises a conductive pad, a conductive bump, and a barrier layer. The conductive pad comprises a pad material. The conductive bump overlies the conductive pad, and comprises a lower bump layer and an upper bump layer covering the lower bump layer. The barrier layer is configured to block movement of the pad material from the conductive pad to the upper bump layer along sidewalls of the lower bump layer. In some embodiments, the barrier layer is a spacer lining the sidewalls of the lower bump layer. In other embodiments, the barrier layer is between the barrier layer and the conductive pad, and spaces the sidewalls of the lower bump layer from the conductive pad.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: April 12, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yao-Wen Chang, Chern-Yow Hsu, Cheng-Yuan Tsai, Kong-Beng Thei
  • Publication number: 20220102396
    Abstract: A system and method for forming pixels in an image sensor is provided. In an embodiment, a semiconductor device includes an image sensor including a first pixel region and a second pixel region in a substrate, the first pixel region being adjacent to the second pixel region. A first anti-reflection coating is over the first pixel region, the first anti-reflection coating reducing reflection for a first wavelength range of incident light. A second anti-reflection coating is over the second pixel region, the second anti-reflection coating reducing reflection for a second wavelength range of incident light that is different from the first wavelength range.
    Type: Application
    Filed: December 13, 2021
    Publication date: March 31, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yen-Chang Chu, Yeur-Luen Tu, Cheng-Yuan Tsai
  • Publication number: 20220077385
    Abstract: Some embodiments relate to an integrated chip. The integrated chip includes a memory cell over a substrate, where the memory cell comprises a data storage structure. A conductive interconnect is over the data storage structure and comprises a first protrusion adjacent to a first side of the data storage structure, where the first protrusion comprises a flat bottom surface. A spacer structure is disposed on the first side of the data storage structure. The spacer structure directly contacts the flat bottom surface of the first protrusion.
    Type: Application
    Filed: November 17, 2021
    Publication date: March 10, 2022
    Inventors: Sheng-Chau Chen, Cheng-Tai Hsiao, Cheng-Yuan Tsai, Hsun-Chung Kuang
  • Patent number: 11270978
    Abstract: A structure includes first and second substrates, first and second stress buffer layers, and a post-passivation interconnect (PPI) structure. The first and second substrates include first and second semiconductor substrates and first and second interconnect structures on the first and second semiconductor substrates, respectively. The second interconnect structure is on a first side of the second semiconductor substrate. The first substrate is bonded to the second substrate at a bonding interface. A via extends at least through the second semiconductor substrate into the second interconnect structure. The first stress buffer layer is on a second side of the second semiconductor substrate opposite from the first side of the second semiconductor substrate. The PPI structure is on the first stress buffer layer and is electrically coupled to the via. The second stress buffer layer is on the PPI structure and the first stress buffer layer.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: March 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Fa Lu, Cheng-Yuan Tsai, Yeur-Luen Tu, Chia-Shiung Tsai
  • Publication number: 20220068745
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip structure. The integrated chip structure includes a first substrate having an upper surface and a recessed surface extending in a closed loop around the upper surface. The recessed surface is vertically between the upper surface and a lower surface of the first substrate opposing the upper surface. A first plurality of interconnects are disposed within a first dielectric structure on the upper surface. A dielectric protection layer is over the recessed surface, along a sidewall of the first dielectric structure, and along a sidewall of the first substrate. The first substrate extends from directly below the dielectric protection layer to laterally outside of the dielectric protection layer.
    Type: Application
    Filed: October 14, 2021
    Publication date: March 3, 2022
    Inventors: Sheng-Chan Li, Cheng-Hsien Chou, Sheng-Chau Chen, Cheng-Yuan Tsai, Kuo-Ming Wu
  • Patent number: 11257997
    Abstract: A semiconductor structure is provided. The semiconductor structure includes metallization structure, a plurality of conductive pads, and a dielectric layer. The plurality of conductive pads is over the metallization structure. The dielectric layer is on the metallization structure and covers the conductive pad. The dielectric layer includes a first dielectric film, a second dielectric film, and a third dielectric film. The first dielectric film is on the conductive pad. The second dielectric film is on the first dielectric film. The third dielectric film is on the second dielectric film. The a refractive index of the first dielectric film is smaller than a refractive index of the second dielectric film, and the refractive index of the second dielectric film is smaller than a refractive index of the third dielectric film.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: February 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chia-Hua Lin, Yao-Wen Chang, Chii-Ming Wu, Cheng-Yuan Tsai, Eugene I-Chun Chen, Tzu-Chung Tsai