Patents by Inventor Chien-Ming Lai

Chien-Ming Lai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220200018
    Abstract: An air-cooling fuel cell stack includes fuel cells, wherein each of the fuel cells includes an anode bipolar plate, a cathode bipolar plate, a membrane electrode assembly (MEA) between the anode and cathode bipolar plates, and an anode sealing member. The MEA includes an anode side structure, a cathode side structure, and an ion conductive membrane (ICM), and the ICM is sandwiched between the anode side structure and the cathode side structure. The anode sealing member is disposed at a periphery of the anode side structure and sandwiched by the anode bipolar plate and the ICM. The anode sealing member includes a first sealing material and a second sealing material, a Shore hardness of the first sealing material is different from that of the second sealing material, and an arrangement direction of the first and second sealing materials is perpendicular to a compression direction of the plurality of fuel cells.
    Type: Application
    Filed: October 8, 2021
    Publication date: June 23, 2022
    Applicant: Industrial Technology Research Institute
    Inventors: Sung-Chun Chang, Chien-Ming Lai, Chiu-Ping Huang, Keng-Yang Chen, Li-Duan Tsai
  • Publication number: 20220189888
    Abstract: A semiconductor structure in which the upper and lower semiconductor wafers are bonded by a hybrid bonding method is provided. The two semiconductor wafers each have discontinuous multiple metal traces or spiral coil-shaped metal traces. By hybrid bonding the two semiconductor wafers, multiple discontinuous metal traces are bonded together to form an inductance element with a continuous and non-intersecting path, or the two spiral coil-shaped metal traces are bonded together to form an inductance element. In this semiconductor structure, the inductance element formed by hybrid bonding has the advantage that the inductance value is easily adjusted.
    Type: Application
    Filed: January 27, 2021
    Publication date: June 16, 2022
    Inventors: Chien-Ming Lai, Hui-Ling Chen, Zhi-Rui Sheng
  • Patent number: 11355431
    Abstract: A semiconductor structure includes a first layer, a second layer, a first interconnection layer, and a second interconnection layer. The first layer includes an upper electrode pattern, and the second layer includes a lower electrode pattern, wherein the upper electrode pattern is opposite to the lower electrode pattern. The first interconnection layer includes a plurality of first interconnect structures electrically connected on the upper electrode pattern. The second interconnection layer includes a plurality of second interconnect structures electrically connected on the lower electrode pattern. The first interconnect structures on the upper electrode pattern are hybrid bonded with the second interconnect structures on the lower electrode pattern. Therefore, the upper electrode patterns and the lower electrode patterns are joined by hybrid bonding to form a capacitor element.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: June 7, 2022
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Chien-Ming Lai, Zhi-Rui Sheng, Hui-Ling Chen
  • Patent number: 11342465
    Abstract: An oxide semiconductor field effect transistor (OSFET) includes a first insulating layer, a source, a drain, a U-shaped channel layer and a metal gate. The first insulating layer is disposed on a substrate. The source and the drain are disposed in the first insulating layer. The U-shaped channel layer is sandwiched by the source and the drain. The metal gate is disposed on the U-shaped channel layer, wherein the U-shaped channel layer includes at least an oxide semiconductor layer. The present invention also provides a method for forming said oxide semiconductor field effect transistor.
    Type: Grant
    Filed: January 3, 2021
    Date of Patent: May 24, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chien-Ming Lai, Yen-Chen Chen, Jen-Po Huang, Sheng-Yao Huang, Hui-Ling Chen, Qinggang Xing, Ding-Lung Chen, Li Li Ding, Yao-Hung Liu
  • Publication number: 20220108946
    Abstract: A semiconductor structure includes a first layer, a second layer, a first interconnection layer, and a second interconnection layer. The first layer includes an upper electrode pattern, and the second layer includes a lower electrode pattern, wherein the upper electrode pattern is opposite to the lower electrode pattern. The first interconnection layer includes a plurality of first interconnect structures electrically connected on the upper electrode pattern. The second interconnection layer includes a plurality of second interconnect structures electrically connected on the lower electrode pattern. The first interconnect structures on the upper electrode pattern are hybrid bonded with the second interconnect structures on the lower electrode pattern. Therefore, the upper electrode patterns and the lower electrode patterns are joined by hybrid bonding to form a capacitor element.
    Type: Application
    Filed: October 7, 2020
    Publication date: April 7, 2022
    Inventors: Chien-Ming Lai, Zhi-Rui Sheng, Hui-Ling Chen
  • Patent number: 11164822
    Abstract: A structure of semiconductor device is provided. The structure includes a first bonding pattern, formed on a first substrate. A first grating pattern is disposed on the first substrate, having a plurality of first bars extending along a first direction. A second bonding pattern is formed on a second substrate. A second grating pattern, disposed on the second substrate, having a plurality of second bars extending along the first direction. The first bonding pattern is bonded to the second bonding pattern. One of the first grating pattern and the second grating pattern is stacked over and overlapping at the first direction with another one of the first grating pattern and the second grating pattern. A first gap between adjacent two of the first bars is different from a second gap between adjacent two of the second bars.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: November 2, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Hsing Kuo, Chun-Ting Yeh, Ming-Tse Lin, Hui-Ling Chen, Chien-Ming Lai
  • Publication number: 20210336059
    Abstract: An oxide semiconductor field effect transistor (OSFET) includes a first insulating layer, a source, a drain, a U-shaped channel layer and a metal gate. The first insulating layer is disposed on a substrate. The source and the drain are disposed in the first insulating layer. The U-shaped channel layer is sandwiched by the source and the drain. The metal gate is disposed on the U-shaped channel layer, wherein the U-shaped channel layer includes at least an oxide semiconductor layer. The present invention also provides a method for forming said oxide semiconductor field effect transistor.
    Type: Application
    Filed: July 6, 2021
    Publication date: October 28, 2021
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chien-Ming Lai, Yen-Chen Chen, Jen-Po Huang, Sheng-Yao Huang, Hui-Ling Chen, Qinggang Xing, Ding-Lung Chen, Li Li Ding, Yao-Hung Liu
  • Patent number: 11145867
    Abstract: Surface-treated copper foils exhibiting a void volume (Vv) in a range of 0.4 to 2.2 ?m3/?m2 and an arithmetic mean waviness (Wa) lower than or equal to 0.4 ?m are reported. Where the surface-treated copper foil is treated on the drum side and includes a treatment layer comprising a nodule layer. Such surface-treated copper foils can be used as a conductive material having low transmission loss, for example in circuit boards.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: October 12, 2021
    Assignee: CHANG CHUN PETROCHEMICAL CO., LTD.
    Inventors: Chien-Ming Lai, Yao-Sheng Lai, Jui-Chang Chou
  • Patent number: 11088285
    Abstract: An oxide semiconductor field effect transistor (OSFET) includes a first insulating layer, a source, a drain, a U-shaped channel layer and a metal gate. The first insulating layer is disposed on a substrate. The source and the drain are disposed in the first insulating layer. The U-shaped channel layer is sandwiched by the source and the drain. The metal gate is disposed on the U-shaped channel layer, wherein the U-shaped channel layer includes at least an oxide semiconductor layer. The present invention also provides a method for forming said oxide semiconductor field effect transistor.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: August 10, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chien-Ming Lai, Yen-Chen Chen, Jen-Po Huang, Sheng-Yao Huang, Hui-Ling Chen, Qinggang Xing, Ding-Lung Chen, Li Li Ding, Yao-Hung Liu
  • Publication number: 20210126131
    Abstract: An oxide semiconductor field effect transistor (OSFET) includes a first insulating layer, a source, a drain, a U-shaped channel layer and a metal gate. The first insulating layer is disposed on a substrate. The source and the drain are disposed in the first insulating layer. The U-shaped channel layer is sandwiched by the source and the drain. The metal gate is disposed on the U-shaped channel layer, wherein the U-shaped channel layer includes at least an oxide semiconductor layer. The present invention also provides a method for forming said oxide semiconductor field effect transistor.
    Type: Application
    Filed: January 3, 2021
    Publication date: April 29, 2021
    Inventors: Chien-Ming Lai, Yen-Chen Chen, Jen-Po Huang, Sheng-Yao Huang, Hui-Ling Chen, Qinggang Xing, Ding-Lung Chen, Li Li Ding, Yao-Hung Liu
  • Patent number: 10923730
    Abstract: Electrodeposited copper foils possessing properties for manufacturing lithium ion rechargeable secondary batteries are described, including methods of making the electrodeposited copper foils, methods for making the battery, and the resultant battery. The electrodeposited copper foils have a specific burst strength in the range of 1.5 to 4.3 kPa*m2/g and a tensile strength in the range of 30 to 40 kgf/mm2. The deposited side of the electrodeposited copper foil has a surface hardness in the range of 0.2 to about 2.0 Gpa by nano indentation analysis to resist wrinkling during pressing of the active materials on the electrodeposited copper foil. The foil exhibits reduced copper burr formation and burr size after clipping.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: February 16, 2021
    Assignee: CHANG CHUN PETROCHEMICAL CO., LTD.
    Inventors: Yao-Sheng Lai, Kuei-Sen Cheng, Jui-Chang Chou, Chien-Ming Lai
  • Publication number: 20200295378
    Abstract: Electrodeposited copper foils possessing properties for manufacturing lithium ion rechargeable secondary batteries are described, including methods of making the electrodeposited copper foils, methods for making the battery, and the resultant battery. The electrodeposited copper foils have a specific burst strength in the range of 1.5 to 4.3 kPa*m2/g and a tensile strength in the range of 30 to 40 kgf/mm2. The deposited side of the electrodeposited copper foil has a surface hardness in the range of 0.2 to about 2.0 Gpa by nano indentation analysis to resist wrinkling during pressing of the active materials on the electrodeposited copper foil. The foil exhibits reduced copper burr formation and burr size after clipping.
    Type: Application
    Filed: March 14, 2019
    Publication date: September 17, 2020
    Inventors: Yao-Sheng LAI, Kuei-Sen CHENG, Jui-Chang CHOU, Chien-Ming LAI
  • Patent number: 10772199
    Abstract: Surface-treated copper foils that exhibit a material volume (Vm) less than 1.90 ?m3/?m2. Where the surface-treated copper foil is treated on the drum side and includes a treatment layer comprising a nodule layer. Such surface-treated copper foils can be used as a conductive material having low transmission loss, for example in circuit boards.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: September 8, 2020
    Assignee: CHANG CHUN PETROCHEMICAL CO., LTD.
    Inventors: Chien-Ming Lai, Yao-Sheng Lai, Jui-Chang Chou
  • Publication number: 20200253047
    Abstract: Surface-treated copper foils that exhibit a material volume (Vm) less than 1.90 ?m3/?m2. Where the surface-treated copper foil is treated on the drum side and includes a treatment layer comprising a nodule layer. Such surface-treated copper foils can be used as a conductive material having low transmission loss, for example in circuit boards.
    Type: Application
    Filed: December 16, 2019
    Publication date: August 6, 2020
    Inventors: Chien-Ming LAI, Yao-Sheng LAI, Jui-Chang CHOU
  • Publication number: 20200248330
    Abstract: Surface-treated copper foils exhibiting a void volume (Vv) in a range of 0.4 to 2.2 ?m3/?m2 and an arithmetic mean waviness (Wa) lower than or equal to 0.4 ?m are reported. Where the surface-treated copper foil is treated on the drum side and includes a treatment layer comprising a nodule layer. Such surface-treated copper foils can be used as a conductive material having low transmission loss, for example in circuit boards.
    Type: Application
    Filed: October 16, 2019
    Publication date: August 6, 2020
    Inventors: Chien-Ming LAI, Yao-Sheng LAI, Jui-Chang CHOU
  • Patent number: 10697077
    Abstract: Provided is an electrolytic copper foil. The electrolytic copper foil has a drum side and a deposited side, wherein ?Rz is less than 0.8 ?m; the electrolytic copper foil has a transverse direction, wherein the electrolytic copper foil is divided into 10 test pieces with the same width and the same length, and each two adjacent ones of the 10 test pieces have a weight deviation therebetween, and a count of the weight deviation(s) greater than or equal to 1.5% is smaller than a count of the weight deviations smaller than 1.
    Type: Grant
    Filed: August 24, 2019
    Date of Patent: June 30, 2020
    Assignee: CHANG CHUN PETROCHEMICAL CO., LTD.
    Inventors: Chien-Ming Lai, Yao-Sheng Lai, Jui-Chang Chou
  • Publication number: 20200083380
    Abstract: An oxide semiconductor field effect transistor (OSFET) includes a first insulating layer, a source, a drain, a U-shaped channel layer and a metal gate. The first insulating layer is disposed on a substrate. The source and the drain are disposed in the first insulating layer. The U-shaped channel layer is sandwiched by the source and the drain. The metal gate is disposed on the U-shaped channel layer, wherein the U-shaped channel layer includes at least an oxide semiconductor layer. The present invention also provides a method for forming said oxide semiconductor field effect transistor.
    Type: Application
    Filed: October 8, 2018
    Publication date: March 12, 2020
    Inventors: Chien-Ming Lai, Yen-Chen Chen, Jen-Po Huang, Sheng-Yao Huang, Hui-Ling Chen, Qinggang Xing, Ding-Lung Chen, Li Li Ding, Yao-Hung Liu
  • Patent number: 10566631
    Abstract: An electrocatalyst is provided. The electrocatalyst includes Pd-containing metal nitride, wherein the metal is Co, Fe, Y, Lu, Sc, Ti, V, Cu, Ni, or a combination thereof. The molar ratio between the metal and Pd is greater than 0 and less than or equal to 0.8. A fuel cell utilizing the above electrocatalyst is further provided.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: February 18, 2020
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Wen-Hsuan Chao, Chiung-Hui Huang, Ping-Hsing Yang, Shan-Haw Chiou, Keng-Yang Chen, Chien-Ming Lai, Li-Duan Tsai
  • Patent number: 10446689
    Abstract: An oxide semiconductor device includes a substrate, a first patterned oxide semiconductor layer, a source electrode, a drain electrode, and a sidewall spacer. The first patterned oxide semiconductor layer is disposed on the substrate. The source electrode and the drain electrode are disposed on the first patterned oxide semiconductor layer. The sidewall spacer is disposed on a sidewall of the first patterned oxide semiconductor layer. The sidewall spacer may be used to improve the performance of blocking impurities from entering the first patterned oxide semiconductor layer via the sidewall, and the electrical performance and the reliability of the oxide semiconductor device may be enhanced accordingly.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: October 15, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Jen-Po Huang, Chien-Ming Lai, Yen-Chen Chen, Sheng-Yao Huang, Hui-Ling Chen, Seng Wah Liau, Han Chuan Fang
  • Patent number: 10446688
    Abstract: An oxide semiconductor device includes a substrate, a first patterned oxide semiconductor layer, a source electrode, a drain electrode, and a sidewall spacer. The first patterned oxide semiconductor layer is disposed on the substrate. The source electrode and the drain electrode are disposed on the first patterned oxide semiconductor layer. The sidewall spacer is disposed on a sidewall of the first patterned oxide semiconductor layer. The sidewall spacer may be used to improve the performance of blocking impurities from entering the first patterned oxide semiconductor layer via the sidewall, and the electrical performance and the reliability of the oxide semiconductor device may be enhanced accordingly.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: October 15, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Jen-Po Huang, Chien-Ming Lai, Yen-Chen Chen, Sheng-Yao Huang, Hui-Ling Chen, Seng Wah Liau, Han Chuan Fang