Patents by Inventor Chien-Ming Lai

Chien-Ming Lai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160307805
    Abstract: The present invention provides a complementary metal oxide semiconductor device, comprising a PMOS and an NMOS. The PMOS has a P type metal gate, which comprises a bottom barrier layer, a P work function metal (PWFM) layer, an N work function tuning (NWFT) layer, an N work function metal (NWFM) layer and a metal layer. The NMOS has an N type metal gate, which comprises the NWFT layer, the NWFM layer and the low-resistance layer. The present invention further provides a method of forming the same.
    Type: Application
    Filed: June 28, 2016
    Publication date: October 20, 2016
    Inventors: Chien-Ming Lai, Chien-Chung Huang, Yu-Ting Tseng, Ya-Huei Tsai, Yu-Ping Wang
  • Patent number: 9412743
    Abstract: The present invention provides a complementary metal oxide semiconductor device, comprising a PMOS and an NMOS. The PMOS has a P type metal gate, which comprises a bottom barrier layer, a P work function metal (PWFM) layer, an N work function tuning (NWFT) layer, an N work function metal (NWFM) layer and a metal layer. The NMOS has an N type metal gate, which comprises the NWFT layer, the NWFM layer and the low-resistance layer. The present invention further provides a method of forming the same.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: August 9, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chien-Ming Lai, Chien-Chung Huang, Yu-Ting Tseng, Ya-Huei Tsai, Yu-Ping Wang
  • Patent number: 9384962
    Abstract: A method of manufacturing a metal gate is provided. The method includes providing a substrate. Then, a gate dielectric layer is formed on the substrate. A multi-layered stack structure having a work function metal layer is formed on the gate dielectric layer. An O2 ambience treatment is performed on at least one layer of the multi-layered stack structure. A conductive layer is formed on the multi-layered stack structure.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: July 5, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Guang-Yaw Hwang, Chun-Hsien Lin, Hung-Ling Shih, Jiunn-Hsiung Liao, Zhi-Cheng Lee, Shao-Hua Hsu, Yi-Wen Chen, Cheng-Guo Chen, Jung-Tsung Tseng, Chien-Ting Lin, Tong-Jyun Huang, Jie-Ning Yang, Tsung-Lung Tsai, Po-Jui Liao, Chien-Ming Lai, Ying-Tsung Chen, Cheng-Yu Ma, Wen-Han Hung, Che-Hua Hsu
  • Patent number: 9349822
    Abstract: A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having an interlayer dielectric (ILD) layer thereon; forming a first recess, a second recess, and a third recess in the ILD layer; forming a material layer on the ILD layer and in the first recess, the second recess, and the third recess; performing a first treatment on the material layer in the first recess; and performing a second treatment on the material layer in the first recess and second recess.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: May 24, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Wei Yang, Yu-Feng Liu, Jian-Cun Ke, Chia-Fu Hsu, En-Chiuan Liou, Ssu-I Fu, Chi-Mao Hsu, Nien-Ting Ho, Yu-Ru Yang, Yu-Ping Wang, Chien-Ming Lai, Yi-Wen Chen, Yu-Ting Tseng, Ya-Huei Tsai, Chien-Chung Huang, Tsung-Yin Hsieh, Hung-Yi Wu
  • Publication number: 20160104786
    Abstract: A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having an interlayer dielectric (ILD) layer thereon; forming a first recess, a second recess, and a third recess in the ILD layer; forming a material layer on the ILD layer and in the first recess, the second recess, and the third recess; performing a first treatment on the material layer in the first recess; and performing a second treatment on the material layer in the first recess and second recess.
    Type: Application
    Filed: November 18, 2014
    Publication date: April 14, 2016
    Inventors: Chih-Wei Yang, Yu-Feng Liu, Jian-Cun Ke, Chia-Fu Hsu, En-Chiuan Liou, Ssu-I Fu, Chi-Mao Hsu, Nien-Ting Ho, Yu-Ru Yang, Yu-Ping Wang, Chien-Ming Lai, Yi-Wen Chen, Yu-Ting Tseng, Ya-Huei Tsai, Chien-Chung Huang, Tsung-Yin Hsieh, Hung-Yi Wu
  • Publication number: 20160093616
    Abstract: The present invention provides a complementary metal oxide semiconductor device, comprising a PMOS and an NMOS. The PMOS has a P type metal gate, which comprises a bottom barrier layer, a P work function metal (PWFM) layer, an N work function tuning (NWFT) layer, an N work function metal (NWFM) layer and a metal layer. The NMOS has an N type metal gate, which comprises the NWFT layer, the NWFM layer and the low-resistance layer. The present invention further provides a method of forming the same.
    Type: Application
    Filed: October 29, 2014
    Publication date: March 31, 2016
    Inventors: Chien-Ming Lai, Chien-Chung Huang, Yu-Ting Tseng, Ya-Huei Tsai, Yu-Ping Wang
  • Publication number: 20160035854
    Abstract: A method for fabricating metal gate transistor is disclosed. The method includes the steps of: providing a substrate having a NMOS region and a PMOS region; forming a dummy gate on each of the NMOS region and the PMOS region respectively; removing the dummy gates from each of the NMOS region and the PMOS region; forming a n-type work function layer on the NMOS region and the PMOS region; removing the n-type work function layer in the PMOS region; forming a p-type work function layer on the NMOS region and the PMOS region; and depositing a low resistance metal layer on the p-type work function layer of the NMOS region and the PMOS region.
    Type: Application
    Filed: October 13, 2015
    Publication date: February 4, 2016
    Inventors: Shih-Fang Tzou, Chien-Ming Lai, Yi-Wen Chen, Hung-Yi Wu, Tong-Jyun Huang, Chien-Ting Lin, Chun-Hsien Lin
  • Patent number: 9231071
    Abstract: A semiconductor structure and a manufacturing method thereof are disclosed. The semiconductor structure includes an isolation layer, a gate dielectric layer, a first work function metal, a first bottom barrier layer, a second work function metal, and a first top barrier layer. The isolation layer is formed on a substrate and has a first gate trench. The gate dielectric layer is formed in the first gate trench. The first work function metal is formed on the gate dielectric layer in the first gate trench. The first bottom barrier layer is formed on the first work function metal. The second work function metal is formed on the first bottom barrier layer. The first top barrier layer is formed on the second work function metal.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: January 5, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hung-Yi Wu, Chien-Ming Lai, Yi-Wen Chen
  • Patent number: 9196546
    Abstract: A metal gate transistor is disclosed. The metal gate transistor includes a substrate, a metal gate on the substrate, and a source/drain region in the substrate. The metal gate further includes a high-k dielectric layer, a bottom barrier metal (BBM) layer on the high-k dielectric layer, a first work function layer on the BBM layer, a second work function layer between the BBM layer and the first work function layer, and a low resistance metal layer on the first work function layer. Preferably, the first work function layer includes a p-type work function layer and the second work function layer includes a n-type work function layer.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: November 24, 2015
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shih-Fang Tzou, Chien-Ming Lai, Yi-Wen Chen, Hung-Yi Wu, Tong-Jyun Huang, Chien-Ting Lin, Chun-Hsien Lin
  • Publication number: 20150332976
    Abstract: A manufacturing method of semiconductor devices having metal gate includes following steps. A substrate having a first semiconductor device and a second semiconductor device formed thereon is provided. The first semiconductor device includes a first gate trench and the second semiconductor device includes a second gate trench. A first work function metal layer is formed in the first gate trench and the second gate trench. A portion of the first work function metal layer is removed from the second gate trench. A second work function metal layer is formed in the first gate trench and the second gate trench. The second work function metal layer and the first work function metal layer include the same metal material. A third work function metal layer and a gap-filling metal layer are sequentially formed in the first gate trench and the second gate trench.
    Type: Application
    Filed: July 28, 2015
    Publication date: November 19, 2015
    Inventors: Po-Chao Tsao, Chien-Ting Lin, Chien-Ming Lai, Chi-Mao Hsu
  • Publication number: 20150333142
    Abstract: A semiconductor device having metal gate includes a substrate, a first metal gate positioned on the substrate, and a second metal gate positioned on the substrate. The first metal gate includes a first p-work function metal layer, an n-work function metal layer, and a gap-filling metal layer. The second metal gate includes a second p-work function metal layer, the n-work function metal layer, and the gap-filling metal layer. The first p-work function metal layer and the second p-work function metal layer include a same p-typed metal material. A thickness of the first p-work function metal layer is larger than a thickness of the second p-work function metal layer. The first p-work function metal layer, the second p-work function metal layer, and the n-work function metal layer include a U shape.
    Type: Application
    Filed: July 29, 2015
    Publication date: November 19, 2015
    Inventors: Po-Chao Tsao, Chien-Ting Lin, Chien-Ming Lai, Chi-Mao Hsu
  • Patent number: 9129985
    Abstract: A manufacturing method of semiconductor devices having metal gate includes following steps. A substrate having a first semiconductor device and a second semiconductor device formed thereon is provided. The first semiconductor device includes a first gate trench and the second semiconductor device includes a second gate trench. A first work function metal layer is formed in the first gate trench and the second gate trench. A portion of the first work function metal layer is removed from the second gate trench. A second work function metal layer is formed in the first gate trench and the second gate trench. The second work function metal layer and the first work function metal layer include the same metal material. A third work function metal layer and a gap-filling metal layer are sequentially formed in the first gate trench and the second gate trench.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: September 8, 2015
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Chao Tsao, Chien-Ting Lin, Chien-Ming Lai, Chi-Mao Hsu
  • Publication number: 20150243754
    Abstract: A semiconductor structure and a manufacturing method thereof are disclosed. The semiconductor structure includes an isolation layer, a gate dielectric layer, a first work function metal, a first bottom barrier layer, a second work function metal, and a first top barrier layer. The isolation layer is formed on a substrate and has a first gate trench. The gate dielectric layer is formed in the first gate trench. The first work function metal is formed on the gate dielectric layer in the first gate trench. The first bottom barrier layer is formed on the first work function metal. The second work function metal is formed on the first bottom barrier layer. The first top barrier layer is formed on the second work function metal.
    Type: Application
    Filed: February 24, 2014
    Publication date: August 27, 2015
    Applicant: United Microelectronics Corp.
    Inventors: Hung-Yi Wu, Chien-Ming Lai, Yi-Wen Chen
  • Patent number: 9092972
    Abstract: A wireless signal access apparatus receives wireless signals of IEEE 802.11 standard for controlling at least one appliance. The appliance may receive control signals of IEEE 802.15 standard, to be controlled according to the control signals. The wireless signal access apparatus receives the wireless signals having control data to generate the control signal of IEEE 802.15 standard, and send it to the appliance for omnidirectional remote control of the appliance.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: July 28, 2015
    Assignee: ACCTON TECHNOLOGY CORPORATION
    Inventor: Chien-Ming Lai
  • Publication number: 20150076623
    Abstract: A method for fabricating metal gate transistor is disclosed. The method includes the steps of: providing a substrate having a NMOS region and a PMOS region; forming a dummy gate on each of the NMOS region and the PMOS region respectively; removing the dummy gates from each of the NMOS region and the PMOS region; forming a n-type work function layer on the NMOS region and the PMOS region; removing the n-type work function layer in the PMOS region; forming a p-type work function layer on the NMOS region and the PMOS region; and depositing a low resistance metal layer on the p-type work function layer of the NMOS region and the PMOS region.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 19, 2015
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Shih-Fang Tzou, Chien-Ming Lai, Yi-Wen Chen, Hung-Yi Wu, Tong-Jyun Huang, Chien-Ting Lin, Chun-Hsien Lin
  • Patent number: 8951855
    Abstract: A manufacturing method for a semiconductor device having a metal gate is provided. First and second gate trenches are respectively formed in first and second semiconductor devices. A work-function metal layer is formed in the first and second gate trenches. A shielding layer is formed on the substrate. A first removing step is performed, so that the remaining shielding layer is at bottom of the second gate trench and fills up the first gate trench. A second removing step is performed, so that the remaining shielding layer is at bottom of the first gate trench to expose the work-function metal layer at sidewall of the first gate trench and in the second gate trench. The work-function metal layer not covered by the remaining shielding layer is removed, so that the remaining work-function metal layer is only at bottom of the first gate trench. The remaining shielding layer is removed.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: February 10, 2015
    Assignee: United Microelectronics Corp.
    Inventors: Chien-Ming Lai, Rai-Min Huang, Tong-Jyun Huang, Che-Hua Hsu, Yi-Wen Chen
  • Publication number: 20140339652
    Abstract: A semiconductor device with oxygen-containing metal gates includes a substrate, a gate dielectric layer and a multi-layered stack structure. The multi-layered stack structure is disposed on the substrate. At least one layer of the multi-layered stack structure includes a work function metal layer. The concentration of oxygen in the side of one layer of the multi-layered stack structure closer to the gate dielectric layer is less than that in the side of one layer of the multi-layered stack structure opposite to the gate dielectric layer.
    Type: Application
    Filed: August 1, 2014
    Publication date: November 20, 2014
    Inventors: Guang-Yaw Hwang, Chun-Hsien Lin, Hung-Ling Shih, Jiunn-Hsiung Liao, Zhi-Cheng Lee, Shao-Hua Hsu, Yi-Wen Chen, Cheng-Guo Chen, Jung-Tsung Tseng, Chien-Ting Lin, Tong-Jyun Huang, Jie-Ning Yang, Tsung-Lung Tsai, Po-Jui Liao, Chien-Ming Lai, Ying-Tsung Chen, Cheng-Yu Ma, Wen-Han Hung, Che-Hua Hsu
  • Publication number: 20140252423
    Abstract: A manufacturing method of semiconductor devices having metal gate includes following steps. A substrate having a first semiconductor device and a second semiconductor device formed thereon is provided. The first semiconductor device includes a first gate trench and the second semiconductor device includes a second gate trench. A first work function metal layer is formed in the first gate trench and the second gate trench. A portion of the first work function metal layer is removed from the second gate trench. A second work function metal layer is formed in the first gate trench and the second gate trench. The second work function metal layer and the first work function metal layer include the same metal material. A third work function metal layer and a gap-filling metal layer are sequentially formed in the first gate trench and the second gate trench.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 11, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Chao Tsao, Chien-Ting Lin, Chien-Ming Lai, Chi-Mao Hsu
  • Patent number: 8816439
    Abstract: A gate structure of a semiconductor device includes a first low resistance conductive layer, a second low resistance conductive layer, and a first type conductive layer disposed between and directly contacting sidewalls of the first low resistance conductive layer and the second low resistance conductive layer.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: August 26, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chih-Hao Yu, Li-Wei Cheng, Che-Hua Hsu, Tian-Fu Chiang, Cheng-Hsien Chou, Chien-Ming Lai, Yi-Wen Chen, Chien-Ting Lin, Guang-Hwa Ma
  • Patent number: 8569389
    Abstract: An organic/inorganic hybrid composite proton exchange membrane is provided. The proton exchange membrane includes an inorganic material of about 0.5-30 parts by weight and an organic material of about 99.5-70 parts by weight per 100 parts by weight of the proton exchange membrane. A surface area of the inorganic material is about 50-3000 m2/g. The organic material includes a sulfonated polymer or a phosphoric acid doped polymer.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: October 29, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Li-Duan Tsai, Yong-Hong Liao, Shih-Wen Chen, Jiunn-Nan Lin, Chien-Ming Lai, Chiu-Ping Huang, Sung-Chun Chang