Patents by Inventor Chien-Ping Huang

Chien-Ping Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110157851
    Abstract: A package structure includes a base body having a first encapsulant and a wiring layer embedded in and exposed from the first encapsulant. The wiring layer has a plurality of conductive traces and a plurality of first electrical contact pads. The first encapsulant has openings for exposing the first electrical contact pads, a chip electrically connected to the wiring layer, and a second encapsulant formed on the base body for covering the chip and the wiring layer, thereby providing an even surface for preventing the encapsulant from cracking when the chip is mounted.
    Type: Application
    Filed: April 13, 2010
    Publication date: June 30, 2011
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Pang-Chun Lin, Hsiao-Jen Hung, Chun-Yuan Li, Chien-Ping Huang, Chun-Chi Ke
  • Publication number: 20110143498
    Abstract: A semiconductor package with a support structure and a fabrication method thereof are provided. With a chip being electrically connected to electrical contacts formed on a carrier, a molding process is performed. A plurality of recessed portions formed on the carrier are filled with an encapsulant for encapsulating the chip during the molding process. After the carrier is removed, the part of the encapsulant filling the recessed portions forms outwardly protruded portions on a surface of the encapsulant, such that the semiconductor package can be attached to an external device via the protruded portions.
    Type: Application
    Filed: February 22, 2011
    Publication date: June 16, 2011
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chien-Ping Huang, Fu-Di Tang
  • Publication number: 20110129966
    Abstract: A semiconductor device and a fabrication method thereof are provided. An opening having at least one slanted side is formed on a substrate. At least one chip and at least one passive component are mounted on the substrate. An encapsulant having a cutaway corner is formed on the substrate to encapsulate the chip and the passive component, wherein the cutaway corner of the encapsulant is spaced apart from the slanted side of the opening by a predetermined distance. A singulation process is performed to cut the encapsulant to form a package with a chamfer. The package is embedded in a lid to form the semiconductor device, wherein a portion of the substrate located between the slanted side of the opening and the cutaway corner of the encapsulant is exposed from the encapsulant to form an exposed portion. The present invention also provides a carrier for the semiconductor device.
    Type: Application
    Filed: February 8, 2011
    Publication date: June 2, 2011
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Yun-Lung Tsai, Yu-Chieh Tsai, Chien-Chih Chen, Chien-Ping Huang
  • Patent number: 7939383
    Abstract: A semiconductor package and a fabrication method thereof are provided in which a dielectric material layer formed with a plurality of openings is used and a solder material is applied into each of the openings. A first copper layer and a second copper layer are in turn deposited over the dielectric material layer and solder materials, and the first and second copper layers are patterned to form a plurality of conductive traces each of which has a terminal coated with a metal layer. A chip is mounted on the conductive traces and electrically connected to the terminals by bonding wires, with the dielectric material layer and solder materials being exposed to the outside. This package structure can flexibly arrange the conductive traces and effectively shorten the bonding wires, thereby improve trace routability and quality of electrical connection for the semiconductor package.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: May 10, 2011
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chien Ping Huang, Yu-Po Wang, Chih-Ming Huang
  • Patent number: 7934313
    Abstract: A fabrication method of a package structure includes: preparing a metal plate having first and second surfaces and defined with an active region; forming a wiring layer with conductive traces and first electrical contact pads on the first surface; forming third electrical contact pads corresponding to the first electrical contact pads on the second surface; forming a first encapsulant on the first surface; forming on the second surface an open area to penetrate the metal plate, wherein the metal plate form conductive posts between the first and third electrical contact pads; mounting in the open area a chip electrically connected to the wiring layer; forming a second encapsulant in the open area, the wiring layer and the third electrical contact pads; forming first and second openings in the first and second encapsulants to expose the third electrical contact pads, respectively; and cutting the metal plate to remove the metal layer.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: May 3, 2011
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Pang-Chun Lin, Hsiao-Jen Hung, Chun-Yuan Li, Chien-Ping Huang, Chun-Chi Ke
  • Publication number: 20110070728
    Abstract: A semiconductor device having conductive bumps and a fabrication method thereof is proposed. The fabrication method includes the steps of forming a first metallic layer on a substrate having solder pads and a passivation layer formed thereon, and electrically connecting it to the solder pads; applying a second covering layer over exposed parts of the first metallic layer; subsequently, forming a second metallic layer on the second covering layer, and electrically connecting it to the exposed parts of the first metallic layer; applying a third covering layer, and forming openings for exposing parts of the second metallic layer to form thereon a conductive bump having a metallic standoff and a solder material. The covering layers and the metallic layers can provide a buffering effect for effectively absorbing the thermal stress imposed on the conductive bumps to prevent delamination caused by the UBM layers.
    Type: Application
    Filed: November 30, 2010
    Publication date: March 24, 2011
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chun-Chi Ke, Chien-Ping Huang
  • Patent number: 7893547
    Abstract: A semiconductor package with a support structure and a fabrication method thereof are provided. With a chip being electrically connected to electrical contacts formed on a carrier, a molding process is performed. A plurality of recessed portions formed on the carrier are filled with an encapsulant for encapsulating the chip during the molding process. After the carrier is removed, the part of the encapsulant filling the recessed portions forms outwardly protruded portions on a surface of the encapsulant, such that the semiconductor package can be attached to an external device via the protruded portions.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: February 22, 2011
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chien-Ping Huang, Fu-Di Tang
  • Patent number: 7884456
    Abstract: A semiconductor device and a fabrication method thereof are provided. An opening having at least one slanted side is formed on a substrate. At least one chip and at least one passive component are mounted on the substrate. An encapsulant having a cutaway corner is formed on the substrate to encapsulate the chip and the passive component, wherein the cutaway corner of the encapsulant is spaced apart from the slanted side of the opening by a predetermined distance. A singulation process is performed to cut the encapsulant to form a package with a chamfer. The package is embedded in a lid to form the semiconductor device, wherein a portion of the substrate located between the slanted side of the opening and the cutaway corner of the encapsulant is exposed from the encapsulant to form an exposed portion. The present invention also provides a carrier for the semiconductor device.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: February 8, 2011
    Assignee: Silicon Precision Industries Co., Ltd.
    Inventors: Yun-Lung Tsai, Yu-Chieh Tsai, Chien-Chih Chen, Chien-Ping Huang
  • Patent number: 7863740
    Abstract: A semiconductor device having conductive bumps and a fabrication method thereof is proposed. The fabrication method includes the steps of forming a first metallic layer on a substrate having solder pads and a passivation layer formed thereon, and electrically connecting it to the solder pads; applying a second covering layer over exposed parts of the first metallic layer; subsequently, forming a second metallic layer on the second covering layer, and electrically connecting it to the exposed parts of the first metallic layer; applying a third covering layer, and forming openings for exposing parts of the second metallic layer to form thereon a conductive bump having a metallic standoff and a solder material. The covering layers and the metallic layers can provide a buffering effect for effectively absorbing the thermal stress imposed on the conductive bumps to prevent delamination caused by the UBM layers.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: January 4, 2011
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chun-Chi Ke, Chien-Ping Huang
  • Patent number: 7858446
    Abstract: A sensor-type semiconductor package and a fabrication method thereof are provided. The fabrication method of the sensor-type semiconductor package includes steps of: providing a wafer having sensor chips; attaching light-permeable bodies to the sensor chips, wherein each light-permeable body has a covering layer and an adhesive layer; singulating the wafer so as to obtain a plurality of separated sensor chips with the light-permeable bodies attached thereon; attaching and electrically connecting the separated sensor chips to a substrate module having substrates, forming an encapsulant encapsulating the sensor chips and the light-permeable bodies; cutting the encapsulant along edges of the light-permeable bodies to a depth at least corresponding the bottom edges of the covering layers; removing the covering layers with the encapsulant mounted thereon to expose the light-permeable bodies; and cutting between the substrates to obtain a plurality of sensor-type semiconductor packages.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: December 28, 2010
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chien-Ping Huang, Tse-Wen Chang, Chang-Yueh Chan, Cheng-Yi Chang
  • Publication number: 20100323513
    Abstract: A semiconductor device having conductive bumps and a fabrication method thereof are provided. The fabrication method mainly including steps of: providing a semiconductor substrate having a solder pad and a passivation layer formed thereon with a portion of the solder pads exposed from the passivation layer; disposing a first metal layer on the solder pad and a portion of the passivation layer around the solder pad; disposing a covering layer on the first metal layer and the passivation layer, and forming an aperture in the covering layer to expose a portion of the first metal layer, wherein a center of the aperture is deviated from that of the solder pad; deposing a metal pillar on the portion of the first metal layer; and deposing a solder material on an outer surface of the metal pillar for providing a better buffering effect.
    Type: Application
    Filed: August 31, 2010
    Publication date: December 23, 2010
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chun-Chi Ke, Chien-Ping Huang
  • Publication number: 20100297842
    Abstract: A conductive bump structure for a semiconductor device and a method for fabricating the same are provided. A metal bump is formed on an under bump metallurgy (UBM) structure electrically connected to and formed on a connection pad of the semiconductor device, wherein the metal bump is sized smaller than the UBM structure. Subsequently, a solder bump is mounted on the UBM structure and encapsulates the metal bump, so as to increase the bonding area and simultaneously allow the solder bump to be sufficiently wetted on the UBM structure to enhance bonding stress of the solder bump.
    Type: Application
    Filed: August 6, 2010
    Publication date: November 25, 2010
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chun Chi KE, Chien-Ping HUANG, Don-Son JIUNG, Yu-Po WANG
  • Publication number: 20100267202
    Abstract: A stacked semiconductor structure and fabrication method thereof are provided. The method includes mounting and connecting electrically a semiconductor chip to a first substrate, mounting on the first substrate a plurality of supporting members corresponding in position to a periphery of the semiconductor chip, mounting a second substrate having a first surface partially covered with a tape and a second surface opposite to the first surface on the supporting members via the second surface, connecting electrically the first and second substrates by bonding wires, forming on the first substrate an encapsulant for encapsulating the semiconductor chip, the supporting members, the second substrate, the bonding wires, and the tape with an exposed top surface, and removing the tape to expose the first surface of the second substrate and allow an electronic component to be mounted thereon. The present invention prevents reflow-induced contamination, spares a special mold, and eliminates flash.
    Type: Application
    Filed: July 2, 2010
    Publication date: October 21, 2010
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chien-Ping Huang, Chih-Ming Huang, Han-Ping Pu, Yu-Po Wang, Cheng-Hsu Hsiao
  • Patent number: 7816187
    Abstract: A semiconductor package and a fabrication method thereof are provided in which a dielectric material layer formed with a plurality of openings is used and a solder material is applied into each of the openings. A first copper layer and a second copper layer are in turn deposited over the dielectric material layer and solder materials, and the first and second copper layers are patterned to form a plurality of conductive traces each of which has a terminal coated with a metal layer. A chip is mounted on the conductive traces and electrically connected to the terminals by bonding wires, with the dielectric material layer and solder materials being exposed to the outside. This package structure can flexibly arrange the conductive traces and effectively shorten the bonding wires, thereby improve trace routability and quality of electrical connection for the semiconductor package.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: October 19, 2010
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chien-Ping Huang, Yu-Po Wang, Chih-Ming Huang
  • Publication number: 20100255635
    Abstract: A multi-chip stack structure and a fabrication method thereof are proposed, including providing a leadframe having a die base and a plurality of leads and disposing a first and a second chips on the two surfaces of the die base respectively; disposing the leadframe on a heating block having a cavity in a wire bonding process with the second chip received in the cavity of the heating block; performing a first wire bonding process to electrically connect the first chip to the leads through a plurality of first bonding wires, and forming a bump on one side of the leads connected with the first bonding wires; disposing the leadframe in an upside down manner to the heating block via the bump with the first chip and the first bonding wires received in the cavity of the heating block; and performing a second wire bonding process to electrically connect the second chip to the leads through a plurality of second bonding wires.
    Type: Application
    Filed: June 18, 2010
    Publication date: October 7, 2010
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Jung-Pin Huang, Chin-Huang Chang, Chien-Ping Huang, Chung-Lun Liu, Cheng-Hsu Hsiao
  • Patent number: 7808110
    Abstract: A semiconductor package substrate proposed by the invention includes a base body and a plurality of finger pads disposed on surface of the base body, wherein the finger pads are arranged in such a way that an angle is formed between connecting line of centers of two adjacent finger pads and the direction in which the finger pads are arranged. The finger pads are waterdrop shaped finger pads with arc ends and angle ends alternately disposed on surface of the substrate, alternately disposed waterdrop shaped finger pads and arc shaped finger pads, or alternately disposed arc shaped finger pads at a predetermined spacing. According to the present invention, distance between adjacent finger pads is reduced and problem of short circuit as a result of erroneous contact between bonding wire and adjacent finger pad is prevented.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: October 5, 2010
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Yu-Po Wang, Chien-Ping Huang, Wei-Chun Lin, Wen Cheng Lee
  • Patent number: 7804173
    Abstract: A semiconductor device having conductive bumps and a fabrication method thereof are provided. The fabrication method mainly including steps of: providing a semiconductor substrate having a solder pad and a passivation layer formed thereon with a portion of the solder pads exposed from the passivation layer; disposing a first metal layer on the solder pad and a portion of the passivation layer around the solder pad; disposing a covering layer on the first metal layer and the passivation layer, and forming an aperture in the covering layer to expose a portion of the first metal layer, wherein a center of the aperture is deviated from that of the solder pad; deposing a metal pillar on the portion of the first metal layer; and deposing a solder material on an outer surface of the metal pillar for providing a better buffering effect.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: September 28, 2010
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chun-Chi Ke, Chien-Ping Huang
  • Publication number: 20100233855
    Abstract: A chip scale package structure and a method for fabricating the same are disclosed. The method includes forming metal pads on a predetermined part of a carrier; mounting chips on the carrier, each of the chips having a plurality of conductive bumps soldered to the metal pads; forming an encapsulant on the carrier to encapsulate the chips and the conductive bumps; removing the carrier to expose the metal pads and even the metal pads with a surface of the encapsulant; forming on the encapsulant a plurality of first conductive traces electrically connected to the metal pads; applying a solder mask on the first conductive traces, and forming a plurality of openings on the solder mask to expose a predetermined part of the first conductive traces; forming a plurality of conductive elements on the predetermined part; and cutting the encapsulant to form a plurality of chip scale package structures.
    Type: Application
    Filed: May 27, 2010
    Publication date: September 16, 2010
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Han-Ping Pu, Chien-Ping Huang, Cheng-Hsu Hsiao
  • Patent number: 7781264
    Abstract: A flip-ship semiconductor package with a lead frame as a chip carrier is provided, wherein a plurality of leads of the lead frame are each formed with at least a dam member thereon. When a chip is mounted on the lead frame by means of solder bumps, each of the solder bumps is attached to the corresponding one of the leads at a position between the dam member and an inner end of the lead. During a reflow-soldering process for wetting the solder bumps to the leads, the dam members would help control collapse height of the solder bumps, so as to enhance resistance of the solder bumps to thermal stress generated by CTE (coefficient of thermal expansion) mismatch between the chip and the leads, thereby preventing incomplete electrical connection between the chip and the leads.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: August 24, 2010
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chi-Chuan Wu, Chien-Ping Huang, Han-Ping Pu
  • Patent number: 7772685
    Abstract: A stacked semiconductor structure and fabrication method thereof are provided. The method includes mounting and connecting electrically a semiconductor chip to a first substrate, mounting on the first substrate a plurality of supporting members corresponding in position to a periphery of the semiconductor chip, mounting a second substrate having a first surface partially covered with a tape and a second surface opposite to the first surface on the supporting members via the second surface, connecting electrically the first and second substrates by bonding wires, forming on the first substrate an encapsulant for encapsulating the semiconductor chip, the supporting members, the second substrate, the bonding wires, and the tape with an exposed top surface, and removing the tape to expose the first surface of the second substrate and allow an electronic component to be mounted thereon. The present invention prevents reflow-induced contamination, spares a special mold, and eliminates flash.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: August 10, 2010
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chien-Ping Huang, Chih-Ming Huang, Han-Ping Pu, Yu-Po Wang, Cheng-Hsu Hsiao