Patents by Inventor Chuan Yang

Chuan Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220375944
    Abstract: An N-type metal oxide semiconductor (NMOS) transistor includes a first gate and a first spacer structure disposed on a first sidewall of the first gate in a first direction. The first spacer structure has a first thickness in the first direction and measured from an outermost point of an outer surface of the first spacer structure to the first sidewall. A P-type metal oxide semiconductor (PMOS) transistor includes a second gate and a second spacer structure disposed on a second sidewall of the second gate in the first direction and measured from an outermost point of an outer surface of the second spacer structure to the second sidewall. The second spacer structure has a second thickness that is greater than the first thickness. The NMOS transistor is a pass-gate of a static random access memory (SRAM) cell, and the PMOS transistor is a pull-up of the SRAM cell.
    Type: Application
    Filed: July 22, 2022
    Publication date: November 24, 2022
    Inventors: Shih-Hao Lin, Chih-Chuan Yang, Hsin-Wen Su, Kian-Long Lim, Chien-Chih Lin
  • Patent number: 11508738
    Abstract: An N-type metal oxide semiconductor (NMOS) transistor includes a first gate and a first spacer structure disposed on a first sidewall of the first gate in a first direction. The first spacer structure has a first thickness in the first direction and measured from an outermost point of an outer surface of the first spacer structure to the first sidewall. A P-type metal oxide semiconductor (PMOS) transistor includes a second gate and a second spacer structure disposed on a second sidewall of the second gate in the first direction and measured from an outermost point of an outer surface of the second spacer structure to the second sidewall. The second spacer structure has a second thickness that is greater than the first thickness. The NMOS transistor is a pass-gate of a static random access memory (SRAM) cell, and the PMOS transistor is a pull-up of the SRAM cell.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: November 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Hao Lin, Chih-Chuan Yang, Hsin-Wen Su, Kian-Long Lim, Chien-Chih Lin
  • Publication number: 20220367459
    Abstract: A method includes forming an anti-punch-through layer over a first region and a second region of a substrate, forming a semiconductor layer over the anti-punch-through layer, patterning the semiconductor layer and the anti-punch-through layer to form a first plurality of fins over the first region and a second plurality of fins over the second region, and forming a patterned resist layer over the first plurality of fins and the second plurality of fins. The method also includes recessing a portion of the substrate between the first plurality of fins and the second plurality of fins in an etching process through openings of the patterned resist layer.
    Type: Application
    Filed: July 27, 2022
    Publication date: November 17, 2022
    Inventors: Chih-Chuan Yang, Yu-Kuan Lin
  • Publication number: 20220367620
    Abstract: Semiconductor devices having improved source/drain features and methods for fabricating such are disclosed herein. An exemplary device includes a semiconductor layer stack disposed over a mesa structure of a substrate. The device further includes a metal gate disposed over the semiconductor layer stack and an inner spacer disposed on the mesa structure of the substrate. The device further includes a first epitaxial source/drain feature and a second epitaxial source/drain feature where the semiconductor layer stack is disposed between the first epitaxial source/drain feature and the second epitaxial source/drain feature. The device further includes a void disposed between the inner spacer and the first epitaxial source/drain feature.
    Type: Application
    Filed: December 15, 2021
    Publication date: November 17, 2022
    Inventors: Chih-Chuan Yang, Wen-Chun Keng, Chong-De Lien, Shih-Hao Lin, Hsin-Wen Su, Ping-Wei Wang
  • Publication number: 20220367726
    Abstract: A method of fabricating a device includes providing a fin element in a device region and forming a dummy gate over the fin element. In some embodiments, the method further includes forming a source/drain feature within a source/drain region adjacent to the dummy gate. In some cases, the source/drain feature includes a bottom region and a top region contacting the bottom region at an interface interposing the top and bottom regions. In some embodiments, the method further includes performing a plurality of dopant implants into the source/drain feature. In some examples, the plurality of dopant implants includes implantation of a first dopant within the bottom region and implantation of a second dopant within the top region. In some embodiments, the first dopant has a first graded doping profile within the bottom region, and the second dopant has a second graded doping profile within the top region.
    Type: Application
    Filed: May 13, 2021
    Publication date: November 17, 2022
    Inventors: Shih-Hao LIN, Chih-Chuan YANG, Chih-Hsuan CHEN, Bwo-Ning CHEN, Cha-Hon CHOU, Hsin-Wen SU, Chih-Hsiang HUANG
  • Publication number: 20220367725
    Abstract: A method of fabricating a device includes providing a fin extending from a substrate in a device type region, where the fin includes a plurality of semiconductor channel layers. In some embodiments, the method further includes forming a gate structure over the fin. Thereafter, in some examples, the method includes removing a portion of the plurality of semiconductor channel layers within a source/drain region adjacent to the gate structure to form a trench in the source/drain region. In some cases, the method further includes after forming the trench, depositing an adhesion layer within the source/drain region along a sidewall surface of the trench. In various embodiments, and after depositing the adhesion layer, the method further includes epitaxially growing a continuous first source/drain layer over the adhesion layer along the sidewall surface of the trench.
    Type: Application
    Filed: May 13, 2021
    Publication date: November 17, 2022
    Inventors: Shih-Hao LIN, Chong-De LIEN, Chih-Chuan YANG, Chih-Yu HSU, Ming-Shuan LI, Hsin-Wen SU
  • Publication number: 20220367482
    Abstract: A semiconductor device according to the present disclosure includes a first source/drain feature, a second source/drain feature, a third source/drain feature, a first dummy fin disposed between the first source/drain feature and the second source/drain feature along a direction to isolate the first source/drain feature from the second source/drain feature, and a second dummy fin disposed between the second source/drain feature and the third source/drain feature along the direction to isolate the second source/drain feature from the third source/drain feature. The first dummy fin includes an outer dielectric layer, an inner dielectric layer over the outer dielectric layer, and a first capping layer disposed over the outer dielectric layer and the inner dielectric layer. The second dummy fin includes a base portion and a second capping layer disposed over the base portion.
    Type: Application
    Filed: July 22, 2022
    Publication date: November 17, 2022
    Inventors: Wen-Chun Keng, Kuo-Hsiu Hsu, Chih-Chuan Yang, Lien Jung Hung, Ping-Wei Wang
  • Publication number: 20220367483
    Abstract: A semiconductor device and method of fabricating thereof where the device includes a fin structure between a first isolation region and a second isolation region. A first source/drain feature is formed over a recessed portion of the first fin structure. The first source/drain feature interfaces a top surface of the first isolation region for a first distance and interfaces the top surface of the second isolation region for a second distance. The first distance is different than the second distance. The source/drain feature is offset in a direction.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 17, 2022
    Inventors: Chih-Chuan YANG, Chia-Hao PAO, Wen-Chun KENG, Lien Jung HUNG, Ping-Wei WANG
  • Publication number: 20220367481
    Abstract: A method of forming a semiconductor device includes providing a substrate including a circuit region and a well strap region, forming a mandrel extending from the circuit region to the well strap region, depositing mandrel spacers on sidewalls of the mandrel, removing the mandrel in the circuit region, while the mandrel in the well strap region remains intact, patterning the substrate with the mandrel spacers in the circuit region and the mandrel in the well strap region as an etch mask, thereby forming at least a first fin in the circuit region and a second fin in the well strap region, and epitaxially growing a first epitaxial feature over the first fin in the circuit region and a second epitaxial feature over the second fin in the well strap region. A width of the second fin is larger than a width of the first fin.
    Type: Application
    Filed: July 27, 2022
    Publication date: November 17, 2022
    Inventors: Chih-Chuan Yang, Kuo-Hsiu Hsu, Feng-Ming Chang, Wen-Chun Keng, Lien Jung Hung
  • Publication number: 20220367728
    Abstract: A semiconductor device includes a substrate, two source/drain features over the substrate, channel layers connecting the two source/drain features, and a gate structure wrapping around each of the channel layers. Each of the two source/drain features include a first epitaxial layer, a second epitaxial layer over the first epitaxial layer, and a third epitaxial layer on inner surfaces of the second epitaxial layer. The channel layers directly interface with the second epitaxial layers and are separated from the third epitaxial layers by the second epitaxial layers. The first epitaxial layers include a first semiconductor material with a first dopant. The second epitaxial layers include the first semiconductor material with a second dopant. The second dopant has a higher mobility than the first dopant.
    Type: Application
    Filed: May 13, 2021
    Publication date: November 17, 2022
    Inventors: Shih-Hao Lin, Chih-Hsuan Chen, Chia-Hao Pao, Chih-Chuan Yang, Chih-Yu Hsu, Hsin-Wen Su, Chia-Wei Chen
  • Publication number: 20220367656
    Abstract: A method includes providing a substrate, a dummy fin, and a stack of semiconductor channel layers; forming an interfacial layer wrapping around each of the semiconductor channel layers; depositing a high-k dielectric layer, wherein a first portion of the high-k dielectric layer over the interfacial layer is spaced away from a second portion of the high-k dielectric layer on sidewalls of the dummy fin by a first distance; depositing a first dielectric layer over the dummy fin and over the semiconductor channel layers, wherein a merge-critical-dimension of the first dielectric layer is greater than the first distance thereby causing the first dielectric layer to be deposited in a space between the dummy fin and a topmost layer of the stack of semiconductor channel layers, thereby providing air gaps between adjacent layers of the stack of semiconductor channel layers and between the dummy fin and the stack of semiconductor channel layers.
    Type: Application
    Filed: July 28, 2021
    Publication date: November 17, 2022
    Inventors: Chia-Hao Pao, Chih-Chuan Yang, Shih-Hao Lin, Kian-Long Lim, Chih-Wei Lee, Chien-Yuan Chen, Jo-Chun Hung, Yung-Hsiang Chan, Yu-Kuan Lin, Lien Jung Hung
  • Publication number: 20220359538
    Abstract: A memory device includes a substrate, first semiconductor fin, second semiconductor fin, first gate structure, second gate structure, first gate spacer, and a second gate spacer. The first gate structure crosses the first semiconductor fin. The second gate structure crosses the second semiconductor fin, the first gate structure extending continuously from the second gate structure, in which in a top view of the memory device, a width of the first gate structure is greater than a width of the second gate structure. The first gate spacer is on a sidewall of the first gate structure. The second gate spacer extends continuously from the first gate spacer and on a sidewall of the second gate structure, in which in the top view of the memory device, a width of the first gate spacer is less than a width of the second gate spacer.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 10, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Wen SU, Chih-Chuan YANG, Shih-Hao LIN, Yu-Kuan LIN, Lien-Jung HUNG, Ping-Wei WANG
  • Publication number: 20220359536
    Abstract: Well pick-up (WPU) regions are disclosed herein for improving performance of memory arrays, such as static random access memory arrays. An exemplary integrated circuit (IC) device includes a circuit region, a WPU region, a first well extending lengthwise along a first direction through the circuit region and into the WPU region, a second well extending lengthwise along the first direction through the circuit region and into the WPU region, and a third well physically connecting a portion of the first well in the WPU region and a portion of the second well in the WPU region.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 10, 2022
    Inventors: Chih-Chuan Yang, Chang-Ta Yang, Ping-Wei Wang
  • Patent number: 11495682
    Abstract: Nanostructure field-effect transistors (NSFETs) including isolation layers formed between epitaxial source/drain regions and semiconductor substrates and methods of forming the same are disclosed. In an embodiment, a semiconductor device includes a semiconductor substrate; a gate stack over the semiconductor substrate, the gate stack including a gate electrode and a gate dielectric layer; a first epitaxial source/drain region adjacent the gate stack; and a high-k dielectric layer extending between the semiconductor substrate and the first epitaxial source/drain region, the high-k dielectric layer contacting the first epitaxial source/drain region, the gate dielectric layer and the high-k dielectric layer including the same material.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: November 8, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Chuan Yang, Shih-Hao Lin
  • Publication number: 20220352179
    Abstract: A four times contacted poly pitch (4CPP) static random-access memory (SRAM) cell layout is disclosed that forms six SRAM transistors from one OD region and four poly lines at a frontside of a substrate and provides a double-sided routing structure for word lines, bit lines, and/or voltage lines. For example, a vertical SRAM is disclosed that stacks transistors, vertically, to facilitate scaling needed for advanced IC technology nodes and improve memory performance. The vertical SRAM further includes a double-sided routing structure, which facilitates placement of bit lines, word lines, and voltage lines in a backside metal one (M1) layer and/or a frontside M1 layer to minimize line capacitance and line resistance.
    Type: Application
    Filed: October 29, 2021
    Publication date: November 3, 2022
    Inventors: Chih-Chuan Yang, Kuo-Hsiu Hsu, Chia-Hao Pao, Shih-Hao Lin
  • Publication number: 20220352334
    Abstract: A method of forming a semiconductor structure includes forming a fin structure having a stack of alternating first semiconductor layers and second semiconductor layers over a substrate, forming cladding layers along sidewalls of the fin structure, forming a dummy gate stack over the cladding layers, and forming source/drain (S/D) features in the fin structure and adjacent to the dummy gate stack. The method further includes removing the dummy gate stack to form a gate trench adjacent to the S/D features, removing the cladding layers to form first openings along the sidewalls of the fin structure, where the first openings extend to below the stack, removing the first semiconductor layers to form second openings between the second semiconductor layers and adjacent to the first openings, and subsequently forming a metal gate stack in the gate trench, the first openings, and the second openings.
    Type: Application
    Filed: September 1, 2021
    Publication date: November 3, 2022
    Inventors: Chih-Chuan Yang, Chia-Hao Pao, Kuo-Hsiu Hsu, Shih-Hao Lin, Shang-Rong Li, Ping-Wei Wang
  • Publication number: 20220352180
    Abstract: A method comprises forming a first fin including alternating first channel layers and first sacrificial layers and a second fin including alternating second channel layers and second sacrificial layers, forming a capping layer over the first and the second fin, forming a dummy gate stack over the capping layer, forming source/drain (S/D) features in the first and the second fin, removing the dummy gate stack to form a gate trench, removing the first sacrificial layers and the capping layer over the first fin to form first gaps, removing the capping layer over the second fin and portions of the second sacrificial layers to from second gaps, where remaining portions of the second sacrificial layers and the capping layers form a threshold voltage (Vt) modulation layer, and forming a metal gate stack in the gate trench, the first gaps, and the second gaps.
    Type: Application
    Filed: September 1, 2021
    Publication date: November 3, 2022
    Inventors: Shih-Hao Lin, Chih-Hsiang Huang, Shang-Rong Li, Chih-Chuan Yang, Jui-Lin Chen, Ming-Shuan Li
  • Publication number: 20220352365
    Abstract: A semiconductor device including nanosheet field-effect transistors (NSFETs) in a first region and fin field-effect transistors (FinFETs) in a second region and methods of forming the same are disclosed. In an embodiment, a device includes a first memory cell, the first memory cell including a first transistor including a first channel region, the first channel region including a first plurality of semiconductor nanostructures; and a second transistor including a second channel region, the second channel region including a semiconductor fin.
    Type: Application
    Filed: July 15, 2022
    Publication date: November 3, 2022
    Inventors: Chih-Chuan Yang, Kuo-Hsiu Hsu, Feng-Ming Chang, Kian-Long Lim, Lien Jung Hung
  • Publication number: 20220352371
    Abstract: Nanostructure field-effect transistors (NSFETs) including isolation layers formed between epitaxial source/drain regions and semiconductor substrates and methods of forming the same are disclosed. In an embodiment, a semiconductor device includes a semiconductor substrate; a gate stack over the semiconductor substrate, the gate stack including a gate electrode and a gate dielectric layer; a first epitaxial source/drain region adjacent the gate stack; and a high-k dielectric layer extending between the semiconductor substrate and the first epitaxial source/drain region, the high-k dielectric layer contacting the first epitaxial source/drain region, the gate dielectric layer and the high-k dielectric layer including the same material.
    Type: Application
    Filed: July 12, 2022
    Publication date: November 3, 2022
    Inventors: Chih-Chuan Yang, Shih-Hao Lin
  • Publication number: 20220352181
    Abstract: A semiconductor device according to the present disclosure includes a gate extension structure, a first source/drain feature and a second source/drain feature, a vertical stack of channel members extending between the first source/drain feature and the second source/drain feature along a direction, and a gate structure wrapping around each of the vertical stack of channel members. The gate extension structure is in direct contact with the first source/drain feature.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 3, 2022
    Inventors: Chih-Chuan Yang, Chia-Hao Pao, Yu-Kuan Lin, Lien-Jung Hung, Ping-Wei Wang, Shih-Hao Lin