Patents by Inventor Chun-Chen Yeh

Chun-Chen Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9947744
    Abstract: A semiconductor device includes a semiconductor-on-insulator wafer having a buried oxide layer. The buried oxide layer includes therein opposing etch barrier regions and a gate region between the etch barrier regions. The semiconductor device further includes at least one nanowire having a channel portion interposed between opposing source/drain portions. The channel portion is suspended in the gate region. A gate electrode is formed in the gate region, and completely surrounds all surfaces of the suspended nanowire. The buried oxide layer comprises a first electrical insulating material, and the etch barrier regions comprising a second electrical insulating material different from the first electrical insulating material.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: April 17, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Zuoguang Liu, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 9947791
    Abstract: A semiconductor device comprises an insulation layer, an active semiconductor layer formed on an upper surface of the insulation layer, and a plurality of fins formed on the insulation layer. The fins are formed in the gate and spacer regions between a first source/drain region and second source/drain region, without extending into the first and second source/drain regions.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: April 17, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Hong He, Chiahsun Tseng, Junli Wang, Chun-chen Yeh, Yunpeg Yin
  • Publication number: 20180102290
    Abstract: A method for forming strained fins includes etching trenches in a bulk substrate to form fins, filling the trenches with a dielectric fill and recessing the dielectric fill into the trenches to form shallow trench isolation regions. The fins are etched above the shallow trench isolation regions to form a staircase fin structure with narrow top portions of the fins. Gate structures are formed over the top portions of the fins. Raised source ad drain regions are epitaxially grown on opposite sides of the gate structure. A pre-morphization implant is performed to generate defects in the substrate to couple strain into the top portions of the fins.
    Type: Application
    Filed: December 13, 2017
    Publication date: April 12, 2018
    Inventors: Kangguo Cheng, Juntao Li, Chun-Chen Yeh
  • Publication number: 20180102432
    Abstract: A method of fabricating features of a vertical transistor include performing a first etch process to form a first portion of a fin in a substrate; depositing a spacer material on sidewalls of the first portion of the fin; performing a second etch process using the spacer material as a pattern to elongate the fin and form a second portion of the fin in the substrate, the second portion having a width that is greater than the first portion; oxidizing a region of the second portion of the fin beneath the spacer material to form an oxidized channel region; and removing the oxidized channel region to form a vacuum channel.
    Type: Application
    Filed: September 1, 2017
    Publication date: April 12, 2018
    Inventors: Qing Liu, Ruilong Xie, Chun-chen Yeh
  • Publication number: 20180102433
    Abstract: A method of fabricating features of a vertical transistor include performing a first etch process to form a first portion of a fin in a substrate; depositing a spacer material on sidewalls of the first portion of the fin; performing a second etch process using the spacer material as a pattern to elongate the fin and form a second portion of the fin in the substrate, the second portion having a width that is greater than the first portion; oxidizing a region of the second portion of the fin beneath the spacer material to form an oxidized channel region; and removing the oxidized channel region to form a vacuum channel.
    Type: Application
    Filed: September 1, 2017
    Publication date: April 12, 2018
    Inventors: Qing Liu, Ruilong Xie, Chun-chen Yeh
  • Publication number: 20180097086
    Abstract: Embodiments of the invention are directed to a vertical FET device having gate and source or drain features. The device includes a fin formed in a substrate and a source or a drain region formed in the substrate. The device further includes a trench formed in the source or the drain region and a dielectric region formed in the trench. The device further includes a gate formed along vertical sidewalls of the fin and positioned such that a space between the gate and the source or the drain region includes at least a portion of the dielectric region. In some embodiments, the device further includes a bottom spacer formed over an upper surface of the dielectric region and positioned such that the space between the gate and the source or the drain region further includes at least a portion of the bottom spacer.
    Type: Application
    Filed: February 15, 2017
    Publication date: April 5, 2018
    Inventors: Kangguo Cheng, Ruilong Xie, Tenko Yamashita, Chun-chen Yeh
  • Patent number: 9935018
    Abstract: One illustrative method disclosed herein includes, among other things, forming first and second vertically-oriented channel (VOC) semiconductor structures for, respectively, first and second vertical transistor devices, and forming first and second top spacers, respectively, around the first and second VOC structures, wherein the first spacer thickness is greater than the second spacer thickness. In this example, the method also includes performing at least one epitaxial deposition process to form a first top source/drain structure around the first VOC structure and above the first top spacer and a second top source/drain structure around the second VOC structure and above the second top spacer, and performing an anneal process so as to cause dopants in the first and second doped top source/drain structures to migrate into, respectively, the first and second VOC structures.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: April 3, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ruilong Xie, Chun-Chen Yeh, Tenko Yamashita, Kangguo Cheng
  • Patent number: 9935201
    Abstract: A semiconductor device includes a fin patterned in a substrate; a gate disposed over and substantially perpendicular to the fin; a pair of epitaxial contacts including a III-V material over the fin and on opposing sides of the gate; and a channel region between the pair of epitaxial contacts under the gate including an undoped III-V material between doped III-V materials, the doped III-V materials including a dopant in an amount in a range from about 1e18 to about 1e20 atoms/cm3 and contacting the epitaxial contacts.
    Type: Grant
    Filed: January 2, 2017
    Date of Patent: April 3, 2018
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES, INC., STMICROELECTRONICS, INC.
    Inventors: Xiuyu Cai, Qing Liu, Kejia Wang, Ruilong Xie, Chun-Chen Yeh
  • Patent number: 9935179
    Abstract: A method for making a semiconductor device may include forming first and second spaced apart semiconductor active regions with an insulating region therebetween, forming at least one sacrificial gate line extending between the first and second spaced apart semiconductor active regions and over the insulating region, and forming sidewall spacers on opposing sides of the at least one sacrificial gate line. The method may further include removing portions of the at least one sacrificial gate line within the sidewall spacers and above the insulating region defining at least one gate line end recess, filling the at least one gate line end recess with a dielectric material, and forming respective replacement gates in place of portions of the at least one sacrificial gate line above the first and second spaced apart semiconductor active regions.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: April 3, 2018
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC., STMICROELECTRONICS, INC.
    Inventors: Xiuyu Cai, Qing Liu, Kejia Wang, Ruilong Xie, Chun-Chen Yeh
  • Publication number: 20180090598
    Abstract: A semiconductor structure includes a semiconductor substrate, a bottom source/drain layer for a first vertical transistor over the semiconductor substrate, a vertical channel over the source/drain layer, and a metal gate wrapped around the vertical channel, the vertical channel having a fixed height relative to the metal gate at an interface therebetween. The semiconductor structure further includes a top source/drain layer over the vertical channel, and a self-aligned contact to each of the top and bottom source/drain layer and the gate. The semiconductor structure can be realized by providing a semiconductor substrate with a bottom source/drain layer thereover, forming a vertical channel over the bottom source/drain layer, forming a dummy gate wrapped around the vertical channel, and forming a bottom spacer layer and a top spacer layer around a top portion and a bottom portion, respectively, of the vertical channel, a remaining center portion of the vertical channel defining a fixed vertical channel height.
    Type: Application
    Filed: September 29, 2016
    Publication date: March 29, 2018
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Ruilong XIE, Tenko YAMASHITA, Kangguo CHENG, Chun-Chen YEH
  • Patent number: 9929059
    Abstract: A method for fabricating a dual silicide device includes growing source and drain (S/D) regions for an N-type device, forming a protection layer over a gate structure and the S/D regions of the N-type device and growing S/D regions for a P-type device. A first dielectric layer is conformally deposited and portions removed to expose the S/D regions. Exposed S/D regions for the P-type device are silicided to form a liner. A second dielectric layer is conformally deposited. A dielectric fill is formed over the second dielectric layer. Contact holes are opened through the second dielectric layer to expose the liner for the P-type device and expose the protection layer for the N-type device. The S/D regions for the N-type device are exposed by opening the protection layer. Exposed S/D regions adjacent to the gate structure are silicided to form a liner for the N-type device. Contacts are formed.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: March 27, 2018
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC.
    Inventors: Balasubramanian Pranatharthiharan, Ruilong Xie, Chun-Chen Yeh
  • Patent number: 9929253
    Abstract: A method for making a semiconductor device includes forming laterally spaced-apart semiconductor fins above a substrate. At least one dielectric layer is formed adjacent an end portion of the semiconductor fins and within the space between adjacent semiconductor fins. A pair of sidewall spacers is formed adjacent outermost semiconductor fins at the end portion of the semiconductor fins. The at least one dielectric layer and end portion of the semiconductor fins between the pair of sidewall spacers are removed. Source/drain regions are formed between the pair of sidewall spacers.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: March 27, 2018
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, STMICROELECTRONICS, INC., GLOBALFOUNDRIES INC.
    Inventors: Xiuyu Cai, Qing Liu, Ruilong Xie, Chun-Chen Yeh
  • Patent number: 9929246
    Abstract: A method is presented for forming a semiconductor structure. The method includes forming a fin over a bottom source/drain region, forming a high-k metal gate (HKMG) adjacent the fin, forming an epitaxial layer over the fin such that at least one gap region is defined adjacent the HKMG, and forming a top source/drain region over the epitaxial layer and the at least one gap region. A hard mask is deposited before the epitaxial layer to cover the fin and the HKMG. An inter-level dielectric (ILD) oxide is deposited adjacent the hard mask. The hard mask is etched to expose a top region of the fin to receive the epitaxial layer. At least one gap region is defined adjacent top sidewalls of the fin.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: March 27, 2018
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ruilong Xie, Tenko Yamashita, Chun-Chen Yeh
  • Publication number: 20180083124
    Abstract: In a fin-Field Effect Transistor (finFET), a recess is created at a location of a fin, the fin being coupled to a gate of the finFET, the recess extending into a substrate interfacing with the gate. The recess is filled at least partially with a first conductive material. The first conductive material is insulated from the gate. The fin is replaced with a replacement structure. The replacement structure is electrically connected to the first conductive material using a second conductive material. the second conductive material is insulated from a first surface of the finFET. A first electrical contact structure is fabricated on the first surface. A second electrical contact structure is fabricated on a second surface of the finFET, the second surface being on a different spatial plane than the first surface.
    Type: Application
    Filed: November 16, 2017
    Publication date: March 22, 2018
    Applicant: International Business Machines Corporation
    Inventors: Miaomiao Wang, Tenko Yamashita, Chun-chen Yeh, Hui Zang
  • Patent number: 9922883
    Abstract: A method for making a semiconductor device is provided. Raised source and drain regions are formed with a tensile strain-inducing material, after thermal treatment to form source drain extension regions, to thereby preserve the strain-inducing material in desired substitutional states.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: March 20, 2018
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC., STMICROELECTRONICS, INC.
    Inventors: Xiuyu Cai, Qing Liu, Ruilong Xie, Chun-Chen Yeh
  • Patent number: 9923055
    Abstract: Embodiments are directed to a method of fabricating inner spacers of a nanosheet FET. The method includes forming sacrificial and channel nanosheets over a substrate, removing sidewall portions of the sacrificial nanosheet, and forming a dielectric that extends over the channel nanosheet and within a space that was occupied by the removed sidewall portions of the sacrificial nanosheet. The method further includes forming a top protective spacer over the channel nanosheet and the dielectric, as well as applying a directional etch to the top protective spacer, the channel nanosheet, and the dielectric, wherein the directional etch is configured to be selective to the channel nanosheet and the dielectric, wherein the directional etch is configured to not be selective to the top protective spacer, and wherein applying the directional etch etches portions of the channel nanosheet and portions of the flowable dielectric that are not under the top dielectric.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: March 20, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Ruilong Xie, Tenko Yamashita, Chun-chen Yeh
  • Publication number: 20180076303
    Abstract: In a fin-Field Effect Transistor (finFET), a recess is created at a location of a fin, the fin being coupled to a gate of the finFET, the recess extending into a substrate interfacing with the gate. The recess is filled at least partially with a first conductive material. The first conductive material is insulated from the gate. The fin is replaced with a replacement structure. The replacement structure is electrically connected to the first conductive material using a second conductive material. The second conductive material is insulated from a first surface of the finFET. A first electrical contact structure is fabricated on the first surface. A second electrical contact structure is fabricated on a second surface of the finFET, the second surface being on a different spatial plane than the first surface.
    Type: Application
    Filed: November 16, 2017
    Publication date: March 15, 2018
    Applicant: International Business Machines Corporation
    Inventors: Miaomiao Wang, Tenko Yamashita, Chun-chen Yeh, Hui Zang
  • Publication number: 20180076304
    Abstract: In a fin-Field Effect Transistor (finFET), a recess is created at a location of a fin, the fin being coupled to a gate of the finFET, the recess extending into a substrate interfacing with the gate. The recess is filled at least partially with a first conductive material. The first conductive material is insulated from the gate. The fin is replaced with a replacement structure. The replacement structure is electrically connected to the first conductive material using a second conductive material. the second conductive material is insulated from a first surface of the finFET. A first electrical contact structure is fabricated on the first surface. A second electrical contact structure is fabricated on a second surface of the finFET, the second surface being on a different spatial plane than the first surface.
    Type: Application
    Filed: November 16, 2017
    Publication date: March 15, 2018
    Applicant: International Business Machines Corporation
    Inventors: Miaomiao Wang, Tenko Yamashita, Chun-chen Yeh, Hui Zang
  • Patent number: 9917152
    Abstract: A method of forming a semiconductor device and resulting device. The method may form a first gate on a gate region of a starting substrate. The starting substrate includes alternating sacrificial layers and semiconductor layers above a buffer sacrificial layer located on a bulk substrate. The method may remove the starting substrate located between the gates. Etching the starting substrate creates a trench into the bulk substrate. The method may form an insulating layer on the inside of the trench. The method may form a masking layer over in the trench in the starting substrate covering a portion of the insulating layer, but below a top surface of the buffer layer. The method may remove the unmasked portion of the insulating layer. The method may form a source/drain in the trench. The method may remove the buffer sacrificial layer, and the sacrificial layers in the layered nanosheet.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: March 13, 2018
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ruilong Xie, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 9917162
    Abstract: A method of forming a gate structure, including forming one or more vertical fins on a substrate; forming a bottom spacer on the substrate surface adjacent to the one or more vertical fins; forming a gate structure on at least a portion of the sidewalls of the one or more vertical fins; forming a gauge layer on at least a portion of the bottom spacer, wherein the gauge layer covers at least a portion of the gate structure on the sidewalls of the one or more vertical fins; and removing a portion of the gauge layer on the bottom spacer.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: March 13, 2018
    Assignees: International Business Machines Corporation, GlobalFoundries Inc.
    Inventors: Kangguo Cheng, Ruilong Xie, Tenko Yamashita, Chun-Chen Yeh