Patents by Inventor Chun Chieh

Chun Chieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • FAN
    Publication number: 20230383762
    Abstract: A fan is provided herein, including a housing, a hub, and a plurality of blades. The housing includes a top case and a bottom case. The hub is rotatably disposed between the top case and the bottom case in an axial direction. The blades extend from the hub in a radial direction, located between the top case and the bottom case. Each of the blades has a proximal end and a distal end. The proximal end is connected to the hub. The distal end is opposite from the proximal end, located at the other side of the blade, having at least one recessed portion. Each of the recessed portions form a passage for air.
    Type: Application
    Filed: May 17, 2023
    Publication date: November 30, 2023
    Inventors: Jau-Han KE, Tsung-Ting CHEN, Chun-Chieh WANG, Yu-Ming LIN, Cheng-Wen HSIEH, Wen-Neng LIAO
  • Publication number: 20230387186
    Abstract: Embodiments include structures and methods for fabricating an MFM capacitor having a plurality of metal contacts. An embodiment may include a first metal strip, disposed on a substrate and extending in a first direction, a ferroelectric blanket layer, disposed on the first metal strip, a second metal strip, disposed on the ferroelectric blanket layer and extending in a second direction different from the first direction, and a plurality of metal contacts disposed between the first metal strip and the second metal strip and located within an intersection region of the first metal strip and the second metal strip.
    Type: Application
    Filed: August 1, 2023
    Publication date: November 30, 2023
    Inventors: Chun-Chieh LU, Mauricio MANFRINI, Marcus Johannes Hendricus VAN DAL, Chih-Yu CHANG, Sai-Hooi YEONG, Yu-Ming LIN, Georgios VALLIANITIS
  • Publication number: 20230386013
    Abstract: The present disclosure provides a method and a system for scanning wafer. The system captures a defect image of a wafer, and generates a reference image corresponding to the first defect image based on a reference image generation model. The system generates a defect marked image based on the defect image and the reference image.
    Type: Application
    Filed: July 27, 2023
    Publication date: November 30, 2023
    Inventors: PEI-HSUAN LEE, CHIEN-HSIANG HUANG, KUANG-SHING CHEN, KUAN-HSIN CHEN, CHUN-CHIEH CHIN
  • Publication number: 20230389300
    Abstract: Provided is a memory device and a method of forming the same. The method includes: providing a substrate having multiple active regions; forming a first layer stack on the substrate; patterning the first layer stack to form multiple recesses in the first layer stack; forming a liner layer on the first layer stack to cover the recesses; performing an etching process to remove a portion of the liner layer and the first layer stack below the recesses, so as to extend the recesses downward to form multiple openings, wherein the openings respectively expose the active regions; respectively forming multiple conductive structures in the openings; forming a second layer stack on the conductive structures; and patterning the second layer stack and the conductive structures to form multiple bit-line structures and bit-line contacts, respectively.
    Type: Application
    Filed: May 12, 2023
    Publication date: November 30, 2023
    Applicant: Winbond Electronics Corp.
    Inventors: Yuan-Hao Su, Chun-Chieh Wang, Tzu-Ming Ou Yang
  • Patent number: 11825916
    Abstract: Buffing of a footwear component allows for an alteration of the component surface to achieve an intended surface for aesthetics and/or manufacturing purposes. The buffing is performed in a system having a vision module, a sidewall buffing module, an up surface buffing module, and a down surface buffing module. Each of the buffing modules are adapted for the unique shape and sizes of a footwear component to effectively and automatically buff the footwear component.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: November 28, 2023
    Assignee: NIKE, Inc.
    Inventors: Chun-Chieh Chen, Yi-Min Chen, Chia-Hung Lin, Hsien-Kuang Wu, Hung-Yu Wu
  • Publication number: 20230378334
    Abstract: A device includes a semiconductor substrate, a low-k dielectric layer over the semiconductor substrate, an isolation layer over the low-k dielectric layer, and a work function layer over the isolation layer. The work function layer is an n-type work function layer. The device further includes a low-dimensional semiconductor layer on a top surface and a sidewall of the work function layer, source/drain contacts contacting opposing end portions of the low-dimensional semiconductor layer, and a dielectric doping layer over and contacting a channel portion of the low-dimensional semiconductor layer. The dielectric doping layer includes a metal selected from aluminum and hafnium, and the channel portion of the low-dimensional semiconductor layer further comprises the metal.
    Type: Application
    Filed: August 3, 2023
    Publication date: November 23, 2023
    Inventors: Chun-Chieh Lu, Tzu Ang Chao, Chao-Ching Cheng, Lain-Jong Li
  • Publication number: 20230378350
    Abstract: A semiconductor device and a method for manufacturing the semiconductor device are provided. The semiconductor device comprises a gate, a ferroelectric layer disposed on the gate; a first channel layer disposed on the ferroelectric layer, a second channel layer disposed on the ferroelectric layer, and source and drain regions disposed on the first channel layer. The first channel layer includes a first thickness and the second channel layer includes a second thickness. A ratio of the first thickness and the second thickness is less than 3/5.
    Type: Application
    Filed: May 19, 2022
    Publication date: November 23, 2023
    Inventors: CHIH-YU CHANG, CHUN-CHIEH LU, YU-CHIEN CHIU, YA-YUN CHENG, YU-MING LIN, SAI-HOOI YEONG, HUNG-WEI LI
  • Publication number: 20230376653
    Abstract: A neural network is used to place macros on a chip canvas in an integrated circuit (IC) design. The macros are first clustered into multiple macro clusters. Then the neural network generates a probability distribution over locations on a grid and aspect ratios of a macro cluster. The grid represents the chip canvas and is formed by rows and columns of grid cells. The macro cluster is described by at least an area size, aspect ratios, and wire connections. Action masks are generated for respective ones of the aspect ratios to block out a subset of unoccupied grid cells based on design rules that optimize macro placement. Then, by applying the action masks on the probability distribution, a masked probability distribution is generated. Based on the masked probability distribution, a location on the grid is selected for placing the macro cluster with a chosen aspect ratio.
    Type: Application
    Filed: May 11, 2023
    Publication date: November 23, 2023
    Inventors: Hsin-Chuan Kuo, Chia-Wei Chen, Yu-Hsiu Lin, Kun-Yu Wang, Sheng-Tai Tseng, Chun-Ku Ting, Fang-Ming Yang, Yu-Hsien Ku, Jen-Wei Lee, Ronald Kuo-Hua Ho, Chun-Chieh Wang, Yi-Ying Liao, Tai-Lai Tung, Ming-Fang Tsai, Chun-Chih Yang, Chih-Wei Ko, Kun-Chin Huang
  • Publication number: 20230376671
    Abstract: A neural network based method places flexible blocks on a chip canvas in an integrated circuit (IC) design. The neural network receives an input describing geometric features of a flexible block to be placed on the chip canvas. The geometric features includes an area size and multiple aspect ratios. The neural network generates a probability distribution over locations on the chip canvas and the aspect ratios of the flexible block. Based on the probability distribution, a location on the chip canvas is selected for placing the flexible block with a chosen aspect ratio.
    Type: Application
    Filed: May 11, 2023
    Publication date: November 23, 2023
    Inventors: Jen-Wei Lee, Yi-Ying Liao, Te-Wei Chen, Yu-Hsiu Lin, Chia-Wei Chen, Chun-Ku Ting, Sheng-Tai Tseng, Ronald Kuo-Hua Ho, Hsin-Chuan Kuo, Chun-Chieh Wang, Ming-Fang Tsai, Chun-Chih Yang, Tai-Lai Tung, Da-Shan Shiu
  • Publication number: 20230378139
    Abstract: An interconnect apparatus and a method of forming the interconnect apparatus is provided. Two integrated circuits are bonded together. A first opening is formed through one of the substrates. A multi-layer dielectric film is formed along sidewalls and a bottom of the first opening. A second opening is formed extending from the first opening to pads in the integrated circuits. A dielectric liner is formed, and the opening is filled with a conductive material to form a conductive plug.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 23, 2023
    Inventors: Shu-Ting Tsai, Dun-Nian Yaung, Jen-Cheng Liu, Chun-Chieh Chuang, Chia-Chieh Lin, U-Ting Chen
  • Patent number: 11819090
    Abstract: Buffing of a footwear component allows for an alteration of the component surface to achieve an intended surface for aesthetics and/or manufacturing purposes. The buffing is performed in a system having a vision module, a sidewall buffing module, an up surface buffing module, and a down surface buffing module. Each of the buffing modules are adapted for the unique shape and sizes of a footwear component to effectively and automatically buff the footwear component.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: November 21, 2023
    Assignee: NIKE, Inc.
    Inventors: Chun-Chieh Chen, Yi-Min Chen, Chia-Hung Lin, Hsien-Kuang Wu, Hung-Yu Wu
  • Patent number: 11824106
    Abstract: A transistor device having fin structures, source and drain terminals, channel layers and a gate structure is provided. The fin structures are disposed on a material layer. The fin structures are arranged in parallel and extending in a first direction. The source and drain terminals are disposed on the fin structures and the material layer and cover opposite ends of the fin structures. The channel layers are disposed respectively on the fin structures, and each channel layer extends between the source and drain terminals on the same fin structure. The gate structure is disposed on the channel layers and across the fin structures. The gate structure extends in a second direction perpendicular to the first direction. The materials of the channel layers include a transition metal and a chalcogenide, the source and drain terminals include a metallic material, and the channel layers are covalently bonded with the source and drain terminals.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: November 21, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Lu, Chao-Ching Cheng, Tzu-Ang Chao, Lain-Jong Li
  • Patent number: 11825202
    Abstract: An electronic device with an auxiliary illumination function and an operation method thereof are provided. The electronic device includes a first body, a display screen, a light-emitting module, and a processing module. The first body has a first surface. The first surface includes a screen area and a border area, and the border area surrounds the screen area. The display screen is disposed in the screen area of the first body. The light-emitting module is disposed in the border area of the first body. The processing module is disposed in the electronic device and is coupled to the display screen and the light-emitting module. The processing module activates the light-emitting module in the border area to emit an auxiliary illumination light according to a required condition.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: November 21, 2023
    Assignee: COMPAL ELECTRONICS, INC.
    Inventors: Po-Yang Chien, Hao-Jen Fang, Wei-Yi Chang, Chun-Chieh Chen, Chen-Cheng Wang, Chih-Wen Chiang
  • Publication number: 20230369764
    Abstract: A mobile device includes a housing, a first radiation element, a second radiation element, a third radiation element, a first switch element, and a second switch element. The first radiation element has a first feeding point. The second radiation element has a second feeding point. The first radiation element, the second radiation element, and the third radiation element are distributed over the housing. The first switch element is closed or open, so as to selectively couple the first radiation element to the third radiation element. The second switch element is closed or open, so as to selectively couple the second radiation element to the third radiation element. An antenna structure is formed by the first radiation element, the second radiation element, and the third radiation element.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 16, 2023
    Applicant: HTC Corporation
    Inventors: Cheng-Hung LIN, Szu-Po WANG, Chia-Te CHIEN, Chun-Chieh WANG, Kang-Ling LI, Chun-Hsien LEE, Yu-Chieh CHIU
  • Publication number: 20230364733
    Abstract: A chemical mechanical planarization apparatus includes a multi-zone platen comprising a plurality of individually controlled concentric toroids. The rotation direction, rotation speed, applied force, relative height, and temperature of each concentric toroid is individually controlled. Concentric polishing pads are affixed to an upper surface of each of the individually controlled concentric toroids. The chemical mechanical planarization apparatus includes a single central slurry source or includes individual slurry sources for each individually controlled concentric toroid.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 16, 2023
    Inventors: Ting-Hsun Chang, Hung Yen, Chi-Hsiang Shen, Fu-Ming Huang, Chun-Chieh Lin, Tsung Hsien Chang, Ji Cui, Liang-Guang Chen, Chih Hung Chen, Kei-Wei Chen
  • Publication number: 20230369439
    Abstract: A thin film transistor may be manufactured by forming a gate electrode in an insulating layer over a substrate, forming a gate dielectric over the gate electrode and the insulating layer, forming an active layer over the gate electrode, and forming a source electrode and a drain electrode contacting a respective portion of a top surface of the active layer. A surface oxygen concentration may be increased in at least one of the gate dielectric and the active layer by introducing oxygen atoms into a surface region of a respective one of the gate dielectric and the active layer.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 16, 2023
    Inventors: Wu-Wei TSAI, Chun-Chieh LU, Hai-Ching CHEN, Yu-Ming LIN, Sai-Hooi YEONG
  • Publication number: 20230371257
    Abstract: A process of forming a three-dimensional (3D) memory array includes forming a stack having a plurality of conductive layers of carbon-based material separated by dielectric layers. Etching trenches in the stack divides the conductive layers into conductive strips. The resulting structure includes a two-dimensional array of horizontal conductive strips. Memory cells may be distributed along the length of each strip to provide a 3D array. The conductive strips together with additional conductive structure that may have a vertical or horizontal orientation allow the memory cells to be addressed individually. Forming the conductive layers with carbon-based material facilitate etching the trenches to a high aspect ratio. Accordingly, forming the conductive layers of carbon-based material enables the memory array to have more layers or to have a higher area density.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 16, 2023
    Inventors: Chun-Chieh Lu, Sai-Hooi Yeong, Yu-Ming Lin
  • Publication number: 20230369224
    Abstract: A structure includes a first conductive feature in a first dielectric layer; a second dielectric layer over the first dielectric layer; and a second conductive feature extending through the second dielectric layer to physically contact the first conductive feature, wherein the second conductive feature includes a metal adhesion layer over and physically contacting the first conductive feature; a barrier layer extending along sidewalls of the second dielectric layer; and a conductive filling material extending over the metal adhesion layer and the barrier layer, wherein a portion of the conductive filling material extends between the barrier layer and the metal adhesion layer.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Chia-Pang Kuo, Chih-Yi Chang, Ming-Hsiao Hsieh, Wei-Hsiang Chan, Ya-Lien Lee, Chien Chung Huang, Chun-Chieh Lin, Hung-Wen Su
  • Publication number: 20230371273
    Abstract: A semiconductor device includes a first electrode layer, a ferroelectric layer, a first alignment layer and a second electrode layer. A material of the first alignment layer includes rare-earth metal oxide. The ferroelectric layer and the first alignment layer are disposed between the first electrode layer and the second electrode layer, and the first alignment layer is disposed between the ferroelectric layer and the first electrode layer.
    Type: Application
    Filed: May 10, 2022
    Publication date: November 16, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Lu, Qing Shi, Bo-Feng Young, Yu-Chuan Shih, Sai-Hooi Yeong, Blanka Magyari-Kope, Ying-Chih Chen, Tzer-Min Shen, Yu-Ming Lin, Chung-Te Lin
  • Patent number: 11817494
    Abstract: A semiconductor device includes an active layer having an active region, a source electrode, a drain electrode, a gate electrode, a source metal layer, a drain metal layer, and a source pad. The source metal layer and the drain metal layer are electrically connected to the source electrode and the drain electrode, respectively. An orthogonal projection of the drain metal layer on the active layer each forms a drain metal layer region. The source pad is electrically connected to the source metal layer. An orthogonal projection of the source pad on the active layer forms a source pad region overlapping the drain metal layer. An area of an overlapping region between the source pad region and the drain metal layer region is smaller than or equal to 40% of an area of the drain metal layer region.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: November 14, 2023
    Assignee: ANCORA SEMICONDUCTORS INC.
    Inventors: Li-Fan Lin, Chun-Chieh Yang, Ying-Chen Liu