Patents by Inventor Chun Wen

Chun Wen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220024756
    Abstract: A MEMS support structure and a cap structure are provided. At least one vertically-extending trench is formed into the MEMS support structure or a portion of the cap structure. A vertically-extending outgassing material portion having a surface that is physically exposed to a respective vertically-extending cavity is formed in each of the at least one vertically-extending trench. A matrix material layer is attached to the MEMS support structure. A movable element laterally confined within a matrix layer is formed by patterning the matrix material layer. The matrix layer is bonded to the cap structure. A sealed chamber containing the movable element is formed. Each vertically-extending outgassing material portion has a surface that is physically exposed to the sealed chamber, and outgases a gas to increase the pressure in the sealed chamber.
    Type: Application
    Filed: October 8, 2021
    Publication date: January 27, 2022
    Inventors: Kuei-Sung CHANG, Tai-Bang An, Chun-Wen Cheng, Hung-Hua Lin
  • Patent number: 11222818
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a fin structure over a semiconductor substrate and forming a gate stack over the fin structure. The method also includes forming an epitaxial structure over the fin structure, and the epitaxial structure is adjacent to the gate stack. The method further includes forming a dielectric layer over the epitaxial structure and forming an opening in the dielectric layer to expose the epitaxial structure. In addition, the method includes applying a metal-containing material on the epitaxial structure while the epitaxial structure is heated so that a portion of the epitaxial structure is transformed to form a metal-semiconductor compound region.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: January 11, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Hsiang Chao, Min-Hsiu Hung, Chun-Wen Nieh, Ya-Huei Li, Yu-Hsiang Liao, Li-Wei Chu, Kan-Ju Lin, Kuan-Yu Yeh, Chi-Hung Chuang, Chih-Wei Chang, Ching-Hwanq Su, Hung-Yi Huang, Ming-Hsing Tsai
  • Patent number: 11216030
    Abstract: A portable electronic device includes a host, a sliding base, a base plate, a display and a sliding rotating element. The sliding base is disposed on the host and has at least one guiding portion and at least one sliding slot connected to the guiding portion. The base plate is disposed on the sliding base. The display is pivoted on the base plate. The sliding rotating element is fixed to the base plate and is rotatably and slidably connected to the sliding base, and the display and the base plate are configured to rotate or slide on the sliding base along with the sliding rotating element.
    Type: Grant
    Filed: September 7, 2020
    Date of Patent: January 4, 2022
    Assignee: COMPAL ELECTRONICS, INC.
    Inventors: Yan-Yu Chen, Chien-Feng Chan, Ming-Cheng Tsou, Yu-Wen Cheng, Chun-Wen Wang, Wang-Hung Yeh
  • Patent number: 11206493
    Abstract: A micro electro mechanical system (MEMS) microphone includes a first membrane, a second membrane, a third membrane disposed between the first membrane and the second membrane, a first cavity disposed between the first membrane and the third membrane and surrounded by a first wall, a second cavity disposed between the second membrane and the third membrane and surrounded by a second wall, and one or more first supports disposed in the first cavity and connecting the first membrane and the third membrane.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: December 21, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chen Hsiung Yang, Chun-Wen Cheng, Chia-Hua Chu, En-Chan Chen
  • Patent number: 11186481
    Abstract: A sensor device includes a microelectromechanical system (MEMS) force sensor, and a capacitive acceleration sensor. In the method of manufacturing the sensor device, a sensor portion of the MEMS force sensor is prepared over a front surface of a first substrate. The sensor portion includes a piezo-resistive element and a front electrode. A bottom electrode and a first electrode are formed on a back surface of the first substrate. A second substrate having an electrode pad and a second electrode to the bottom of the first substrate are attached such that the bottom electrode is connected to the electrode pad and the first electrode faces the second electrode with a space therebetween.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: November 30, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen Hsiung Yang, Chun-Wen Cheng, Jiou-Kang Lee
  • Patent number: 11189727
    Abstract: A device includes a semiconductor fin protruding from a substrate, a first gate stack over the semiconductor fin and a second gate stack over the semiconductor fin, a first source/drain region in the semiconductor fin adjacent the first gate stack and a second source/drain region in the semiconductor fin adjacent the second gate stack, a first layer of a first dielectric material on the first gate stack and a second layer of the first dielectric material on the second gate stack, a first source/drain contact on the first source/drain region and adjacent the first gate stack, a first layer of a second dielectric material on a top surface of the first source/drain contact, and a second source/drain contact on the second source/drain region and adjacent the second gate stack, wherein the top surface of the second source/drain contact is free of the second dielectric material.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: November 30, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Peng-Chung Jangjian, Kao-Feng Liao, Chun-Wen Hsiao, Hsin-Ying Ho, Sheng-Chao Chuang
  • Patent number: 11189967
    Abstract: An electrical connector includes an insulating seat and at least one conductive terminal provided therein. The insulating seat includes a rear wall and two side walls, surroundingly forming a mating space. Each side wall includes an extending arm and an elastic arm. The elastic arm has a first arm extending forward from the extending arm and a second arm bending reversely from the first arm and extending backward. The second arm is connected to the rear wall. An opening slot is formed between the first arm and the extending arm and runs forward therethrough. A through slot is formed between the second arm and the first arm. A buckling portion is formed at a side of the second arm away from the first arm to correspond to the through slot and the opening slot in a left-right direction. The conductive terminal has a contact portion exposed to the mating space.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: November 30, 2021
    Assignee: LOTES CO., LTD
    Inventors: Qi Xiao Yang, Wen Chang Chang, Yan Chun Wen, Chu Jun Liang
  • Patent number: 11184694
    Abstract: An integrated microphone device is provided. The integrated microphone device includes a substrate, a plate, and a membrane. The substrate includes an aperture allowing acoustic pressure to pass through. The plate is disposed on a side of the substrate. The membrane is disposed between the substrate and the plate and movable relative to the plate as acoustic pressure strikes the membrane. The membrane includes a vent valve having an open area that is variable in response to a change in acoustic pressure.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: November 23, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Chun-Wen Cheng, Chia-Hua Chu, Chun-Yin Tsai, Tzu-Heng Wu, Wen-Cheng Kuo
  • Patent number: 11180363
    Abstract: A MEMS support structure and a cap structure are provided. At least one vertically-extending trench is formed into the MEMS support structure or a portion of the cap structure. A vertically-extending outgassing material portion having a surface that is physically exposed to a respective vertically-extending cavity is formed in each of the at least one vertically-extending trench. A matrix material layer is attached to the MEMS support structure. A movable element laterally confined within a matrix layer is formed by patterning the matrix material layer. The matrix layer is bonded to the cap structure. A sealed chamber containing the movable element is formed. Each vertically-extending outgassing material portion has a surface that is physically exposed to the sealed chamber, and outgases a gas to increase the pressure in the sealed chamber.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: November 23, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Kuei-Sung Chang, Tai-Bang An, Chun-wen Cheng, Hung-Hua Lin
  • Patent number: 11174158
    Abstract: In some embodiments, a sensor is provided. The sensor includes a microelectromechanical systems (MEMS) substrate disposed over an integrated chip (IC), where the IC defines a lower portion of a first cavity and a lower portion of a second cavity, and where the first cavity has a first operating pressure different than an operating pressure of the second cavity. A cap substrate is disposed over the MEMS substrate, where a first pair of sidewalls of the cap substrate partially define an upper portion of the first cavity, and a second pair of sidewalls of the cap substrate partially define an upper portion of the second cavity. A sensor area comprising a movable portion of the MEMS substrate and a dummy area comprising a fixed portion of the MEMS substrate are both disposed in the first cavity. A pressure enhancement structure is disposed in the dummy area.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: November 16, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wen Cheng, Fei-Lung Lai, Kuei-Sung Chang, Shang-Ying Tsai
  • Publication number: 20210349299
    Abstract: A method for analyzing 2D material thin film and a system for analyzing 2D material thin film are disclosed. The detection method includes the following steps: capturing sample images of 2D material thin films; measuring the 2D material thin films by a Raman spectrometer; performing a visible light hyperspectral algorithm on the sample images by a processor to generate a plurality of visible light hyperspectral images; performing a training and validation procedure, performing an image feature algorithm on the visible light hyperspectral images, and establishing a thin film prediction model based on a validation; and capturing a thin-film image to be measured by the optical microscope, performing the visible light hyperspectral algorithm, and then generating a distribution result of the thin-film image to be measured according to an analysis of the thin film prediction model.
    Type: Application
    Filed: April 20, 2021
    Publication date: November 11, 2021
    Inventors: HSIANG-CHEN WANG, KAI-CHUN LI, KAI-HSIANG KE, CHUN-WEN LIANG
  • Publication number: 20210344141
    Abstract: An electrical connector includes an insulating seat and at least one conductive terminal provided therein. The insulating seat includes a rear wall and two side walls, surroundingly forming a mating space. Each side wall includes an extending arm and an elastic arm. The elastic arm has a first arm extending forward from the extending arm and a second arm bending reversely from the first arm and extending backward. The second arm is connected to the rear wall. An opening slot is formed between the first arm and the extending arm and runs forward therethrough. A through slot is formed between the second arm and the first arm. A buckling portion is formed at a side of the second arm away from the first arm to correspond to the through slot and the opening slot in a left-right direction. The conductive terminal has a contact portion exposed to the mating space.
    Type: Application
    Filed: September 28, 2020
    Publication date: November 4, 2021
    Inventors: Qi Xiao Yang, Wen Chang Chang, Yan Chun Wen, Chu Jun Liang
  • Publication number: 20210323155
    Abstract: A detection system and detection method for the sensors of a robot. A detection system installs three sensors at the motor side and power output terminal of the robot. A detection unit detects the normal or abnormal state of three sensors to index the abnormal sensor for maintenance, and two normal sensors are selected for keeping the robot safety operation without stop.
    Type: Application
    Filed: January 19, 2021
    Publication date: October 21, 2021
    Inventors: Chun-Wen Lai, I-Bing Su
  • Publication number: 20210315301
    Abstract: A headband adjustment structure includes a base, a wearing unit, a rotary adjusting assembly, a linkage member and an elastic element. The wearing unit includes a first end portion and a second end portion that overlap with each other. The first end portion and the second end portion are movably located in the base to define an adjustable accommodation space. The rotary adjusting assembly is pivotally located within the base, and provided with a gear body meshed with a first toothed rack of the first end portion and a second toothed rack of the second end portion so as to simultaneously move the first end portion and the second end portion in opposite directions for adjusting the adjustable accommodation space. The linkage member is connected to the rotary adjusting assembly. The elastic element abutting against the linkage member and the base, respectively.
    Type: Application
    Filed: July 15, 2020
    Publication date: October 14, 2021
    Applicant: Quanta Computer Inc.
    Inventors: Chun-Wen Wang, Chun-Nan Huang, Chun-Lung Chen, Heng-Min Hu
  • Publication number: 20210309508
    Abstract: Various embodiments of the present disclosure are directed towards a microelectromechanical system (MEMS) device. The MEMS device includes a dielectric structure disposed over a first semiconductor substrate, where the dielectric structure at least partially defines a cavity. A second semiconductor substrate is disposed over the dielectric structure. The second semiconductor substrate includes a movable mass, where opposite sidewalls of the movable mass are disposed between opposite sidewall of the cavity. An anti-stiction structure is disposed between the movable mass and the dielectric structure, where the anti-stiction structure is a first silicon-based semiconductor.
    Type: Application
    Filed: June 16, 2021
    Publication date: October 7, 2021
    Inventors: Kuei-Sung Chang, Chun-Wen Cheng, Fei-Lung Lai, Shing-Chyang Pan, Yuan-Chih Hsieh, Yi-Ren Wang
  • Publication number: 20210314707
    Abstract: A MEMS microphone includes a substrate having an opening, a first diaphragm, a first backplate, a second diaphragm, and a backplate. The first diaphragm faces the opening in the substrate. The first backplate includes multiple accommodating-openings and it is spaced apart from the first diaphragm. The second diaphragm joints the first diaphragm together at multiple locations by pillars passing through the accommodating-openings in the first backplate. The first backplate is located between the first diaphragm and the second diaphragm. The second backplate includes at least one vent hole and it is spaced apart from the second diaphragm. The second diaphragm is located between the first backplate and the second backplate.
    Type: Application
    Filed: June 17, 2021
    Publication date: October 7, 2021
    Inventors: Chun-Wen Cheng, Chia-Hua Chu, Wen-Tuan Lo
  • Publication number: 20210302367
    Abstract: A biochip including a fluidic substrate having an opening extending completely through the fluidic substrate. The biochip further includes a silicon oxide coating on the fluidic substrate. The biochip further includes a plurality of sidewalls on the fluidic substrate, wherein the plurality of sidewalls defines a channel in fluid communication with the opening, the silicon oxide coating is between adjacent sidewalls of the plurality of sidewalls, and each of the plurality of sidewalls comprises polydimethylsiloxane (PDMS). The biochip further includes a detection substrate spaced from the fluidic substrate.
    Type: Application
    Filed: April 2, 2021
    Publication date: September 30, 2021
    Inventors: Yi-Shao LIU, Chun-Ren CHENG, Chun-wen CHENG
  • Patent number: 11117796
    Abstract: An embodiment is a MEMS device including a first MEMS die having a first cavity at a first pressure, a second MEMS die having a second cavity at a second pressure, the second pressure being different from the first pressure, and a molding material surrounding the first MEMS die and the second MEMS die, the molding material having a first surface over the first and the second MEMS dies. The device further includes a first set of electrical connectors in the molding material, each of the first set of electrical connectors coupling at least one of the first and the second MEMS dies to the first surface of the molding material, and a second set of electrical connectors over the first surface of the molding material, each of the second set of electrical connectors being coupled to at least one of the first set of electrical connectors.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: September 14, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wen Cheng, Jung-Huei Peng, Shang-Ying Tsai, Hung-Chia Tsai, Yi-Chuan Teng
  • Patent number: 11121572
    Abstract: A charging service method includes transmitting information of a communication device to a charging station, transmitting information of the charging station to the communication device, acquiring available service information of the charging station from a charging station server according to the information of the charging station, selecting at least one service option for generating charging service information, transmitting the charging service information to the charging station server, generating charging station certification information to the communication device, relaying the charging station certification information from the communication device to the charging station, and enabling a charging function of the charging station to charge the communication device after the charging station certification information is received by the charging station.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: September 14, 2021
    Assignee: ITE Tech. Inc.
    Inventors: Chun-Wen Lin, Ming-Hsun Sung
  • Patent number: D940781
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: January 11, 2022
    Assignee: ASUSTeK COMPUTER INC.
    Inventors: Cheng-Wei Huang, Ten-Long Dan, Chun-Wen Chen, Chih-Wei Chuang, Tsui-Wei Lin, Ting-Wei Ku, Chung-Chuan Chu, Chih-Wei Kao