Patents by Inventor Chun-Yu Lin

Chun-Yu Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11133959
    Abstract: An apparatus including a storage medium and a controller is provided. The storage medium stores a mapping of stream Identifiers (IDs) to Virtual Local Area Network (VLAN) tags. The controller is coupled to the storage medium and configured to route a packet for a Time-Sensitive Networking (TSN) network according to the mapping. The routing of the packet includes replacing a VLAN tag in the packet according to the stream ID of the packet and the mapping, so as to maintain the real-time deterministic behavior of delivering data streams in the TSN network.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: September 28, 2021
    Assignee: MOXA INC.
    Inventors: Chi-Chuan Liu, Chun-Yu Lin, Chien-Yu Lai, Wen-Lu Liao
  • Patent number: 11127160
    Abstract: An object characteristic locating device is provided, which includes a camera module and a processing module. The camera module is configured to capture an image from a front scene. The processing module is configured to perform the following operations: locating a position of an image object in the captured image, and determining a framing range with the image object from the captured image; and preforming image processing on the framing range according to a characteristic of the image object, so as to locate the position of an image characteristic portion of the image object in the captured image.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: September 21, 2021
    Assignee: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Chun-Yu Lin, Feng-Chun Hsu, Sumesh Nair, Jing-Jie Su, Chia-Ying Chang, Shean-Jen Chen
  • Patent number: 11121889
    Abstract: An apparatus including a storage medium and a controller is provided. The storage medium stores a first mapping of stream Identifiers (IDs) to VLAN tags, and a second mapping of the stream IDs to VLAN tag indications. The controller is coupled to the storage medium and configured to route a packet between a Time-Sensitive Networking (TSN) network and a non-TSN network according to the first and second mappings. The routing of the packet includes inserting or removing a VLAN tag in or from the packet according to the stream ID of the packet and the first and second mappings, so as to enable interoperability between the TSN network and the non-TSN network.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: September 14, 2021
    Assignee: MOXA INC.
    Inventors: Chi-Chuan Liu, Chun-Yu Lin, Chien-Yu Lai, Wen-Lu Liao
  • Patent number: 11088298
    Abstract: The present disclosure provides a light-emitting device comprising a substrate with a topmost surface; a first semiconductor stack arranged on the substrate, and comprising a first top surface separated from the topmost surface by a first distance; a first bonding layer arranged between the substrate and the first semiconductor stack; a second semiconductor stack arranged on the substrate, and comprising a second top surface separated from the topmost surface by a second distance which is different form the first distance; a second bonding layer arranged between the substrate and the second semiconductor stack; a third semiconductor stack arranged on the substrate, and comprising third top surface separated from the topmost surface by a third distance; and a third bonding layer arranged between the substrate and the third semiconductor stack; wherein the first semiconductor stack, the second semiconductor stack, and the third semiconductor stack are configured to emit different color lights.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: August 10, 2021
    Assignee: EPISTAR CORPORATION
    Inventors: Chien-Fu Huang, Chih-Chiang Lu, Chun-Yu Lin, Hsin-Chih Chiu
  • Publication number: 20210205450
    Abstract: The present invention discloses a method for treating a subject suffering from a Flavivirus infection. The method includes a step of administering to the subject a pharmaceutical composition including a pharmaceutically effective amount of an anti-CD44 antibody.
    Type: Application
    Filed: March 17, 2021
    Publication date: July 8, 2021
    Applicant: Kaohsiung Medical University
    Inventors: Yen-Hsu Chen, Chun-Yu Lin, Paraskevi Heldin
  • Patent number: 11043911
    Abstract: A motor control device with built-in shunt resistor and power transistor is disclosed, comprising a high-thermally conductive substrate; an electrically conductive circuit which is thermo-conductively installed on the high-thermally conductive substrate and includes a first thermal connection pad portion and a second thermal connection pad portion mutually spaced apart; a high power transistor conductively connected to the electrical conducive circuit; and a shunt resistor conductively connected to the high power transistor, respectively including a body whose thermal expansion coefficient is greater than that of the high-thermally conductive substrate, as well as a pair of welding portions extending from the body, in which the body has a prescribed width, and the width of the welding portion is greater than the prescribed width, and the body and the high-thermally conductive substrate are spaced apart such that, upon welding the welding portion to the first thermal connection pad portion and the second therm
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: June 22, 2021
    Assignees: ICP Technology Co., Ltd., Sentec E&E Co., Ltd.
    Inventors: Ho-Chieh Yu, Chen-Cheng-Lung Liao, Chun-Yu Lin, Jason An Cheng Huang
  • Patent number: 10994993
    Abstract: A method of forming an enhanced super-resolution image is provided. The method includes: preparing a substrate comprising a glass substrate, a metal layer on the glass substrate, and a biolayer on the metal layer; placing a biological specimen on the substrate, the biological specimen being in contact with the biolayer and being attached to the metal layer through the biolayer, in which the biological specimen is labeled by a plurality of spontaneous blinking elements therein; irradiating a light beam to the metal layer via the glass substrate; receiving fluorescence signals emitted from the spontaneous blinking elements within a time period; fitting a plurality of functions respectively to each of the fluorescence signals; pinpointing peak positions of the functions; and reconstructing the peak positions to derive the enhanced super-resolution image of an underlying structure of the biological specimen in proximity to the metal layer.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: May 4, 2021
    Assignee: National Central University
    Inventors: Fan-Ching Chien, Chun-Yu Lin
  • Publication number: 20210118171
    Abstract: An object characteristic locating device is provided, which includes a camera module and a processing module. The camera module is configured to capture an image from a front scene. The processing module is configured to perform the following operations: locating a position of an image object in the captured image, and determining a framing range with the image object from the captured image; and preforming image processing on the framing range according to a characteristic of the image object, so as to locate the position of an image characteristic portion of the image object in the captured image.
    Type: Application
    Filed: February 19, 2020
    Publication date: April 22, 2021
    Inventors: Chun-Yu LIN, Feng-Chun HSU, Sumesh NAIR, Jing-Jie SU, Chia-Ying CHANG, Shean-Jen CHEN
  • Publication number: 20210053824
    Abstract: A method of forming an enhanced super-resolution image is provided. The method includes: preparing a substrate comprising a glass substrate, a metal layer on the glass substrate, and a biolayer on the metal layer; placing a biological specimen on the substrate, the biological specimen being in contact with the biolayer and being attached to the metal layer through the biolayer, in which the biological specimen is labeled by a plurality of spontaneous blinking elements therein; irradiating a light beam to the metal layer via the glass substrate; receiving fluorescence signals emitted from the spontaneous blinking elements within a time period; fitting a plurality of functions respectively to each of the fluorescence signals; pinpointing peak positions of the functions; and reconstructing the peak positions to derive the enhanced super-resolution image of an underlying structure of the biological specimen in proximity to the metal layer.
    Type: Application
    Filed: August 22, 2019
    Publication date: February 25, 2021
    Inventors: Fan-Ching CHIEN, Chun-Yu LIN
  • Publication number: 20210043808
    Abstract: An embodiment of the present invention provides a micro light emitting diode (LED) array and its manufacturing method. The micro-LED includes a substrate, an epitaxial layer formed on the substrate, and a conversion film formed on the epitaxial layer. Pixels can be defined through lithography, and the pixel size can be very small. This method is characterized in that a mass transfer is not required.
    Type: Application
    Filed: January 7, 2020
    Publication date: February 11, 2021
    Inventors: Ching-Fuh Lin, Chun-Yu Lin, Yi-Shan Lin, Jung-Kuan Huang
  • Publication number: 20210043803
    Abstract: An optoelectronic semiconductor device includes a semiconductor stack, an electrode, and a plurality of contact portions. The semiconductor stack includes a first type semiconductor structure, an active structure on the first type semiconductor structure, and a second type semiconductor structure on the active structure. The first type semiconductor structure includes a first protrusion part, a second protrusion part and a platform part between the first protrusion part and the second protrusion part. The semiconductor stack includes a thickness. The electrode on the second type semiconductor structure includes a region corresponding to the first protrusion. The contact portions are located at the second protrusion part without being at the first protrusion part. The contact portions are attached to the first type semiconductor structure.
    Type: Application
    Filed: August 7, 2020
    Publication date: February 11, 2021
    Inventors: Chung-Hao WANG, Yu-Chi Wang, Yi-Ming Chen, Yi-Yang Chiu, Chun-Yu Lin
  • Patent number: 10833064
    Abstract: An ESD protection circuit and integrated circuit for a broadband circuit are disclosed. The ESD protection circuit includes a silicon-controlled rectifier, an inductor and a trigger unit. The silicon-controlled rectifier is formed by four semiconductor materials and includes a first end, a second end and a third end. The first end is coupled with a first P-type semiconductor material and a signal input end. The second end is coupled with a second N-type semiconductor material. The third end is coupled with a second P-type semiconductor material. One end of the inductor is coupled with the signal input end and the first end, and the other end thereof is coupled with a signal output end and a high-frequency circuit. One end of the trigger unit is coupled with the signal output end and the high-frequency circuit, and the other end thereof is coupled with the third end.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: November 10, 2020
    Assignee: National Taiwan Normal University
    Inventors: Chun-Yu Lin, Yu-Hsuan Lai
  • Publication number: 20200287075
    Abstract: The present disclosure provides a light-emitting device comprising a substrate with a topmost surface; a first semiconductor stack arranged on the substrate, and comprising a first top surface separated from the topmost surface by a first distance; a first bonding layer arranged between the substrate and the first semiconductor stack; a second semiconductor stack arranged on the substrate, and comprising a second top surface separated from the topmost surface by a second distance which is different form the first distance; a second bonding layer arranged between the substrate and the second semiconductor stack; a third semiconductor stack arranged on the substrate, and comprising third top surface separated from the topmost surface by a third distance; and a third bonding layer arranged between the substrate and the third semiconductor stack; wherein the first semiconductor stack, the second semiconductor stack, and the third semiconductor stack are configured to emit different color lights.
    Type: Application
    Filed: May 26, 2020
    Publication date: September 10, 2020
    Inventors: Chien-Fu HUANG, Chih-Chiang LU, Chun-Yu LIN, Hsin-Chih CHIU
  • Publication number: 20200274022
    Abstract: A semiconductor light-emitting device comprises a substrate; a first adhesive layer on the substrate; multiple epitaxial units on the first adhesive layer; a second adhesive layer on the multiple epitaxial units; multiple first electrodes between the first adhesive layer and the multiple epitaxial units, and contacting the first adhesive layer and the multiple epitaxial units; and multiple second electrodes between the second adhesive layer and the multiple epitaxial units, and contacting the second adhesive layer and the multiple epitaxial units; wherein the multiple epitaxial units are totally separated.
    Type: Application
    Filed: May 11, 2020
    Publication date: August 27, 2020
    Inventors: Hsin-Chih Chiu, Chih-Chiang Lu, Chun-Yu Lin, Ching-Huai Ni, Yi-Ming Chen, Tzu-Chieh Hsu, Ching-Pei Lin
  • Patent number: 10749077
    Abstract: An optoelectronic device includes a semiconductor stack including a first surface and a second surface opposite to the first surface; a first contact layer on the first surface; and a second contact layer on the second surface. The second contact layer is not overlapped with the first contact layer in a vertical direction. The second contact layer includes a plurality of dots separating to each other and formed of semiconductor material.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: August 18, 2020
    Assignee: EPISTAR CORPORATION
    Inventors: Chun-Yu Lin, Yung-Fu Chang, Rong-Ren Lee, Kuo-Feng Huang, Cheng-Long Yeh, Yi-Ching Lee, Ming-Siang Huang, Ming-Tzung Liou
  • Patent number: 10743411
    Abstract: A ceramic substrate component suitable for high-power chips includes a ceramic substrate body and at least one raised metal pad. The ceramic substrate body has an upper surface and a lower surface opposite to the upper surface. The raised metal pad includes a base portion and a top layer. The base portion, which is attached to the upper surface of the ceramic substrate body, has a thickness between 10 and 300 micrometers, and a thermal expansion coefficient greater than the ceramic substrate body. The top layer is formed on the base portion and adapted to install a high-power chip thereon. The top layer extends an area less than the base portion but greater than the high-power chip, and has a thermal expansion coefficient greater than the ceramic substrate body. As such, damages due to thermal stress occurring between the base portion and the ceramic substrate body can be mitigated.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: August 11, 2020
    Assignees: ICP Technology Co., Ltd., Industrial Technology Research Institute
    Inventors: Ho-Chieh Yu, Chen-Cheng-Lung Liao, Chun-Yu Lin, Hsiao-Ming Chang, Jing-Yao Chang, Tao-Chih Chang
  • Publication number: 20200245456
    Abstract: A ceramic substrate component suitable for high-power chips includes a ceramic substrate body and at least one raised metal pad. The ceramic substrate body has an upper surface and a lower surface opposite to the upper surface. The raised metal pad includes a base portion and a top layer. The base portion, which is attached to the upper surface of the ceramic substrate body, has a thickness between 10 and 300 micrometers, and a thermal expansion coefficient greater than the ceramic substrate body. The top layer is formed on the base portion and adapted to install a high-power chip thereon. The top layer extends an area less than the base portion but greater than the high-power chip, and has a thermal expansion coefficient greater than the ceramic substrate body. As such, damages due to thermal stress occurring between the base portion and the ceramic substrate body can be mitigated.
    Type: Application
    Filed: January 8, 2020
    Publication date: July 30, 2020
    Inventors: Ho-Chieh Yu, Chen-Cheng-Lung Liao, Chun-Yu Lin, Hsiao-Ming Chang, Jing-Yao Chang, Tao-Chih Chang
  • Patent number: 10700240
    Abstract: The present disclosure provides a light-emitting device. The light-emitting device includes a light emitting area and an electrode area. The light-emitting area includes a first semiconductor structure having a first active layer and a second semiconductor structure having a second active layer. The electrode area includes an external electrode structure surrounding the second semiconductor structure in a top view. The light-emitting area has a shape of circle or polygon in the top view. When the first semiconductor structure is driven by a first current, the first active layer can emit a first light with a first main wavelength. When the second semiconductor structure is driven by a second current, the active layer of the second semiconductor structure can emit a second light with a second main wavelength.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: June 30, 2020
    Assignee: EPISTAR CORPORATION
    Inventors: Yao-Ru Chang, Wen-Luh Liao, Chun-Yu Lin, Hsin-Chan Chung, Hung-Ta Cheng
  • Publication number: 20200186067
    Abstract: A motor control device with built-in shunt resistor and power transistor is disclosed, comprising a high-thermally conductive substrate; an electrically conductive circuit which is thermo-conductively installed on the high-thermally conductive substrate and includes a first thermal connection pad portion and a second thermal connection pad portion mutually spaced apart; a high power transistor conductively connected to the electrical conducive circuit; and a shunt resistor conductively connected to the high power transistor, respectively including a body whose thermal expansion coefficient is greater than that of the high-thermally conductive substrate, as well as a pair of welding portions extending from the body, in which the body has a prescribed width, and the width of the welding portion is greater than the prescribed width, and the body and the high-thermally conductive substrate are spaced apart such that, upon welding the welding portion to the first thermal connection pad portion and the second therm
    Type: Application
    Filed: November 22, 2019
    Publication date: June 11, 2020
    Inventors: Ho-Chieh Yu, Chen-Cheng-Lung Liao, Chun-Yu Lin, Jason An Cheng Huang
  • Patent number: 10680133
    Abstract: The present disclosure provides a light-emitting device comprises a substrate with a topmost surface; a first semiconductor stack arranged on the substrate, and comprising a first light-emitting layer separated from the topmost surface by a first distance; a second semiconductor stack arranged on the substrate, and comprising a second light-emitting layer separated from the topmost surface by a second distance; and a third semiconductor stack arranged on the substrate, and comprising third light-emitting layer separated from the topmost surface by a third distance; wherein the first semiconductor stack, the second semiconductor stack, and the third semiconductor stack are configured to emit different color lights; and wherein the second distance is different form the first distance and the third distance.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: June 9, 2020
    Assignee: EPISTAR CORPORATION
    Inventors: Chien-Fu Huang, Chih-Chiang Lu, Chun-Yu Lin, Hsin-Chih Chiu