Patents by Inventor Chyi-Shyuan Chern

Chyi-Shyuan Chern has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8119473
    Abstract: The present disclosure also provides another embodiment of a method for making metal gate stacks. The method includes forming a first dummy gate and a second dummy gate on a substrate; removing a polysilicon layer from the first dummy gate, resulting in a first gate trench; forming a first metal layer and a first aluminum layer in the first gate trench; applying a chemical mechanical polishing (CMP) process to the substrate; performing an annealing process to the first aluminum layer using a nitrogen and oxygen containing gas, forming an interfacial layer of aluminum, nitrogen and oxygen on the first aluminum layer; thereafter removing the polysilicon layer from the second dummy gate, resulting in a second gate trench; and forming a second metal layer and a second aluminum layer on the second metal layer in the second gate trench.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: February 21, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo Bin Huang, Ssu-Yi Li, Ryan Chia-Jen Chen, Chi-Ming Yang, Chyi Shyuan Chern, Chin-Hsiang Lin
  • Patent number: 8088685
    Abstract: The described embodiments of methods of bottom-up metal deposition to fill interconnect and replacement gate structures enable gap-filling of fine features with high aspect ratios without voids and provide metal films with good film quality. In-situ pretreatment of metal film(s) deposited by gas cluster ion beam (GCIB) allows removal of surface impurities and surface oxide to improve adhesion between an underlying layer with the deposited metal film(s). Metal films deposited by photo-induced chemical vapor deposition (PI-CVD) using high energy of low-frequency light source(s) at relatively low temperature exhibit liquid-like nature, which allows the metal films to fill fine feature from bottom up. The post deposition annealing of metal film(s) deposited by PI-CVD densifies the metal film(s) and removes residual gaseous species from the metal film(s). For advanced manufacturing, such bottom-up metal deposition methods address the challenges of gap-filling of fine features with high aspect ratios.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: January 3, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Simon Su-Horng Lin, Chi-Ming Yang, Chyi Shyuan Chern, Chin-Hsiang Lin
  • Publication number: 20110195570
    Abstract: The described embodiments of methods of bottom-up metal deposition to fill interconnect and replacement gate structures enable gap-filling of fine features with high aspect ratios without voids and provide metal films with good film quality. In-situ pretreatment of metal film(s) deposited by gas cluster ion beam (GCIB) allows removal of surface impurities and surface oxide to improve adhesion between an underlying layer with the deposited metal film(s). Metal films deposited by photo-induced chemical vapor deposition (PI-CVD) using high energy of low-frequency light source(s) at relatively low temperature exhibit liquid-like nature, which allows the metal films to fill fine feature from bottom up. The post deposition annealing of metal film(s) deposited by PI-CVD densifies the metal film(s) and removes residual gaseous species from the metal film(s). For advanced manufacturing, such bottom-up metal deposition methods address the challenges of gap-filling of fine features with high aspect ratios.
    Type: Application
    Filed: February 9, 2010
    Publication date: August 11, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Simon Su-Horng Lin, Chi-Ming Yang, Chyi Shyuan Chern, Chin-Hsiang Lin
  • Publication number: 20110156166
    Abstract: The present disclosure also provides another embodiment of a method for making metal gate stacks. The method includes forming a first dummy gate and a second dummy gate on a substrate; removing a polysilicon layer from the first dummy gate, resulting in a first gate trench; forming a first metal layer and a first aluminum layer in the first gate trench; applying a chemical mechanical polishing (CMP) process to the substrate; performing an annealing process to the first aluminum layer using a nitrogen and oxygen containing gas, forming an interfacial layer of aluminum, nitrogen and oxygen on the first aluminum layer; thereafter removing the polysilicon layer from the second dummy gate, resulting in a second gate trench; and forming a second metal layer and a second aluminum layer on the second metal layer in the second gate trench.
    Type: Application
    Filed: December 31, 2009
    Publication date: June 30, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo Bin Huang, Ssu-Yi Li, Ryan Chia-Jen Chen, Chi-Ming Yang, Chyi Shyuan Chern, Chin-Hsiang Lin
  • Patent number: 7950983
    Abstract: A retainer ring and a method of using the retainer ring are provided. The retainer ring has openings along a bottom surface. Grooves encompass the openings and extend to an interior portion of the retainer ring wherein a semiconductor wafer may be held. In operation, a semiconductor wafer is placed inside the retainer ring. As the retainer ring and the semiconductor wafer are moved relative to an underlying polishing pad, slurry is dispensed through the openings in the retainer ring. The grooves in the retainer ring allow the slurry to flow from the openings to the interior portion of the retainer ring and the semiconductor wafer.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: May 31, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Soon Kang Huang, Chih-Lung Lin, Chyi-Shyuan Chern
  • Publication number: 20110086504
    Abstract: A method for forming an integrated circuit is provided. The method includes forming a gate dielectric structure over a substrate. A titanium-containing sacrificial layer is formed, contacting the gate dielectric structure. The whole titanium-containing sacrificial layer is substantially removed.
    Type: Application
    Filed: September 10, 2010
    Publication date: April 14, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo Bin HUANG, Hsin-Chien LU, Ryan Chia-Jen CHEN, Chi-Ming YANG, Chyi Shyuan CHERN, Chin-Hsiang LIN
  • Patent number: 7919335
    Abstract: A method includes measuring a depth of a shallow trench isolation (STI) region below a surface of a substrate. The STI region is filled with an oxide material. The substrate has a nitride layer above the surface. A thickness of the nitride layer is measured. A first chemical vapor etch (CVE) of the oxide material is performed, to partially form a recess in the STI region. The first CVE removes an amount of the oxide material less than the thickness of the nitride layer. The nitride layer is removed by dry etching. A remaining height of the STI region is measured after removing the nitride. A second CVE of the oxide material in the STI region is performed, based on the measured depth and the remaining height, to form at least one fin having a desired fin height above the oxide in the STI region without an oxide fence.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: April 5, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ying Xiao, Chyi Shyuan Chern
  • Patent number: 7837850
    Abstract: An electroplating system is provided. The system comprises a reaction tank, a tube, and a video bubble detector. The reaction tank, having a first diameter, contains a plating solution. The tube, connecting to the reaction tank, comprises an inflow tube and a branch, wherein the inflow tube inputs the plating solution into the reaction tank, and the branch has an enlarged part having the first diameter. The video bubble detector, mounted on the enlarged part of the branch, detects the presence of a bubble in the plating solution flowing through the branch.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: November 23, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Da Guo, Pin-Chieh Hu, Hung-Cheng Chen, Kuan-Hsiao Lin, Wen-Chang Peng, Hsiao-Pin Shih, Chyi-Shyuan Chern
  • Publication number: 20100288369
    Abstract: A vacuum system for semiconductor fabrication. The system includes a vacuum chamber for performing a semiconductor fabrication process, a vacuum source, and a piping system fluidly connecting the vacuum chamber to the vacuum source. In one embodiment, the piping system is configured without a horizontal flow path section of piping. In some embodiments, the piping system includes a first piping branch and a second piping branch. The first and second piping branches preferably have a symmetrical configuration with respect to the vacuum source. In yet other embodiments, the first and second piping branches preferably each include a throttle valve.
    Type: Application
    Filed: May 18, 2009
    Publication date: November 18, 2010
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Pin CHANG, Chyi Shyuan CHERN
  • Publication number: 20100291751
    Abstract: The invention relates to integrated circuit fabrication, and more particularly to an electronic device with an isolation structure made having almost no void. An exemplary method for fabricating an isolation structure, comprising: providing a substrate; forming a trench in the substrate; partially filling the trench with a first silicon oxide; exposing a surface of the first silicon oxide to a vapor mixture comprising NH3 and a fluorine-containing compound; heating the substrate to a temperature between 100° C. to 200° C.; and filling the trench with a second silicon oxide, whereby the isolation structure made has almost no void.
    Type: Application
    Filed: May 5, 2010
    Publication date: November 18, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tze-Liang LEE, Pei-Ren JENG, Chu-Yun FU, Chyi Shyuan CHERN, Jui-Hei HUANG, Chih-Tang PENG, Hao-Ming LIEN
  • Publication number: 20100291840
    Abstract: A chemical mechanical polishing (CMP) apparatus provides for polishing semiconductor wafers and for conditioning the polishing pad of the CMP apparatus using multiple conditioning disks at the same time. The conditioning disks may be moved together or independently along the surface of polishing pad to condition the entire surface of the rotating polishing pad.
    Type: Application
    Filed: May 12, 2009
    Publication date: November 18, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Soon Kang HUANG, Kun-Ku HUNG, Zin-Chang WEI, Chyi Shyuan CHERN
  • Publication number: 20100267172
    Abstract: A method includes measuring a depth of a shallow trench isolation (STI) region below a surface of a substrate. The STI region is filled with an oxide material. The substrate has a nitride layer above the surface. A thickness of the nitride layer is measured. A first chemical vapor etch (CVE) of the oxide material is performed, to partially form a recess in the STI region. The first CVE removes an amount of the oxide material less than the thickness of the nitride layer. The nitride layer is removed by dry etching. A remaining height of the STI region is measured after removing the nitride. A second CVE of the oxide material in the STI region is performed, based on the measured depth and the remaining height, to form at least one fin having a desired fin height above the oxide in the STI region without an oxide fence.
    Type: Application
    Filed: April 20, 2009
    Publication date: October 21, 2010
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ying XIAO, Chyi Shyuan CHERN
  • Publication number: 20100221849
    Abstract: A method for implant uniformity is provided that includes determining a variation of critical dimensions (CD) of a semiconductor wafer, moving the semiconductor wafer in a two-dimensional mode during an implantation process, and controlling a velocity of the movement of the semiconductor wafer so that an implant dose to the semiconductor wafer is varied based on the variation of CD.
    Type: Application
    Filed: February 27, 2009
    Publication date: September 2, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Nai-Han Cheng, Chyi Shyuan Chern
  • Publication number: 20100210041
    Abstract: An apparatus includes a process chamber configured to perform an ion implantation process. A cooling platen or electrostatic chuck is provided within the process chamber. The cooling platen or electrostatic chuck is configured to support a semiconductor wafer. The cooling platen or electrostatic chuck has a plurality of temperature zones. Each temperature zone includes at least one fluid conduit within or adjacent to the cooling platen or electrostatic chuck. At least two coolant sources are provided, each fluidly coupled to a respective one of the fluid conduits and configured to supply a respectively different coolant to a respective one of the plurality of temperature zones during the ion implantation process. The coolant sources include respectively different chilling or refrigeration units.
    Type: Application
    Filed: February 13, 2009
    Publication date: August 19, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Lin Chang, Hsin-Hsien Wu, Zin-Chang Wei, Chi-Ming Yang, Chyi-Shyuan Chern, Jun-Lin Yeh, Jih-Jse Lin, Jo-Fei Wang, Ming-Yu Fan, Jong-I Mou
  • Publication number: 20100210189
    Abstract: A chemical mechanical polishing method and apparatus provides a deformable, telescoping slurry dispenser arm coupled to a dispenser head that may be arcuate in shape and may also be a bendable telescoping member that can be adjusted to vary the number of slurry dispenser ports and the degree of curvature of the dispenser head. The dispenser arm may additionally include slurry dispenser ports therein. The dispenser arm may advantageously be formed of a plurality of nested tubes that are slidable with respect to one another. The adjustable dispenser arm may pivot about a pivot point and can be variously positioned to accommodate different sized polishing pads used to polish substrates of different dimensions and the bendable, telescoping slurry dispenser arm and dispenser head provide uniform slurry distribution to any of various wafer polishing locations, effective slurry usage and uniform polishing profiles in each case.
    Type: Application
    Filed: February 13, 2009
    Publication date: August 19, 2010
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kun-Ku Hung, Zin-Chang Wei, Huang Soon Kang, Chyi-Shyuan Chern
  • Patent number: 7776757
    Abstract: The present disclosure provides a method for fabricating a semiconductor device. The method includes providing a semiconductor substrate having a first region and a second region, forming a high-k dielectric layer over the semiconductor substrate, forming a first metal layer and a first silicon layer by an in-situ deposition process, patterning the first silicon layer to remove a portion overlying the second region, patterning the first metal layer using the patterned first silicon layer as a mask, and removing the patterned first silicon layer including applying a solution. The solution includes a first component having an [F-] concentration greater than 0.01M, a second component configured to adjust a pH of the solution from about 4.3 to about 6.7, and a third component configured to adjust a potential of the solution to be greater than ?1.4 volts.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: August 17, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Simon Su-Horng Lin, Yu-Ming Lee, Shao-Yen Ku, Chi-Ming Yang, Chyi-Shyuan Chern, Chin-Hsiang Lin
  • Publication number: 20100187444
    Abstract: A method includes dividing a semiconductor wafer into a plurality of dies areas, generating a map of the semiconductor wafer, scanning each of the plurality of die areas of the semiconductor wafer with a laser, and adjusting a parameter of the laser during the scanning based on a value of the die areas identified by the map of the semiconductor wafer. The map characterizing the die areas based on a first measurement of each individual die area.
    Type: Application
    Filed: January 26, 2009
    Publication date: July 29, 2010
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Ru Yang, Chyi Shyuan Chern, Soon Kang Huang
  • Publication number: 20100178772
    Abstract: The present disclosure provides a method for fabricating a semiconductor device. The method includes providing a semiconductor substrate having a first region and a second region, forming a high-k dielectric layer over the semiconductor substrate, forming a first metal layer and a first silicon layer by an in-situ deposition process, patterning the first silicon layer to remove a portion overlying the second region, patterning the first metal layer using the patterned first silicon layer as a mask, and removing the patterned first silicon layer including applying a solution. The solution includes a first component having an [F—] concentration greater than 0.01 M, a second component configured to adjust a pH of the solution from about 4.3 to about 6.7, and a third component configured to adjust a potential of the solution to be greater than ?1.4 volts.
    Type: Application
    Filed: January 15, 2009
    Publication date: July 15, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Simon Su-Horng Lin, Yu-Ming Lee, Shao-Yen Ku, Chi-Ming Yang, Chyi-Shyuan Chern, Chin-Hsiang Lin
  • Publication number: 20100167506
    Abstract: In some embodiments, a method of doping a semiconductor wafer disposed on a pedestal electrode in an inductive plasma chamber includes generating a plasma having a first voltage with respect to ground in the inductive plasma chamber, and applying a radio frequency (RF) voltage with respect to ground to the pedestal electrode in the inductive plasma chamber. The positive RF voltage is based on the first voltage of the plasma.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Simon Su-Horng LIN, Chi-Ming Yang, Chyi Shyuan Chern, Chin-Hsiang Lin
  • Publication number: 20100163078
    Abstract: A method includes spinning a semiconductor wafer about an axis normal to a major surface of the wafer. The wafer is translated in a direction parallel to the major surface with an oscillatory motion, while spinning the wafer. A material is sprayed from first and second nozzles or orifices at respective first and second locations on the major surface of the wafer simultaneously while spinning the wafer and translating the wafer.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tzu-Jeng Hsu, Chi-Ming Yang, Chyi Shyuan Chern