Patents by Inventor Daniel J. Friedman

Daniel J. Friedman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140063925
    Abstract: Embodiments of the present invention provide a device comprising a plurality of phase change memory cells, a word line, and a plurality of bit lines. Each phase change memory cell is coupled to a corresponding transistor. Each transistor is coupled to the word line. Each bit line is coupled to a phase change memory cell of the device. The device further comprises a programming circuit configured to program at least one phase change memory cell to the SET state by selectively applying a two-stage waveform to the word line and the bit lines of the device. In a first stage, a first predetermined low voltage and a first predetermined high voltage are applied at the word line and the bit lines, respectively. In a second stage, a second predetermined high voltage and a predetermined voltage with decreasing amplitude are applied at the word line and the bit lines, respectively.
    Type: Application
    Filed: March 29, 2012
    Publication date: March 6, 2014
    Applicant: International Business Machines Corporation
    Inventors: Daniel J. Friedman, Seongwon Kim, Yong Liu, Bipin Rajendran
  • Patent number: 8665034
    Abstract: Techniques for improved tuning control of varactor circuits are disclosed. For example, an apparatus comprises a plurality of varactors for tuning a frequency value. The plurality of varactors comprises approximately sqrt(2N) varactors, where N is a number of tuning steps and the plurality of varactors are respectively sized as 1x, 2x, 3x, 4x, . . . , approximately sqrt(2N)x, and where x is a unit of capacitance. A given one of the N tuning steps may be represented by more than one combination of varactors. This may be referred to as redundant numbering.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: March 4, 2014
    Assignee: International Business Machines Corporation
    Inventors: Herschel A. Ainspan, Daniel J. Friedman, Alexander V. Rylyakov, Jose A. Tierno
  • Publication number: 20130336378
    Abstract: Circuits and methods are provided for efficient feed-forward equalization when sample-and-hold circuitry is employed to generate n time-delayed versions of an input data signal to be equalized. To equalize the input data signal, m data signals are input to m feed-forward equalization (FFE) taps of a current-integrating summer circuit, wherein each of the m data signals corresponds to one of the n time-delayed versions of the input data signal. A capacitance is precharged to a precharge level during a reset period of the current-integrating summer circuit. An output current is generated by each of the m FFE taps during an integration period of the current-integrating summer circuit, wherein the output currents from the m FFE taps collectively charge or discharge the capacitance during the integration period. A gating control signal is applied to an FFE tap during the integration period to disable the FFE tap during a portion of the integration period in which the data signal input to the FFE tap is invalid.
    Type: Application
    Filed: August 16, 2013
    Publication date: December 19, 2013
    Applicant: International Business Machines Corporation
    Inventors: Ankur Agrawal, John F. Bulzacchelli, Daniel J. Friedman, Zeynep Toprak Deniz
  • Patent number: 8593260
    Abstract: A system and method are provided for modifying the effective reading range of an radio frequency identification tag. The tag, a chip-based tag, includes an antenna and a chip in communication with the antenna. The chip includes circuitry including field effect transistors that can modify the effective reading range of the tag by modifying characteristics of the tag including the modulation depth of the backscatter signal, the impedance characteristics of the tag front end electronics, the power consumption characteristics and the threshold power-on voltage of the tag. These characteristics are change either temporarily or permanently in response to commands communicated to the tag from a radio frequency identification reader.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: November 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Han Chen, Daniel J. Friedman, Paul A. Moskowitz
  • Patent number: 8476945
    Abstract: Phase profile generator systems and methods are disclosed. A system includes a signal generator, a target phase trajectory module, an error detector and a control loop filter. The signal generator is configured to generate an output signal. In addition, the target phase trajectory module is configured to track a target phase trajectory and determine a next adjustment of the output signal to conform the output signal to a portion of the target phase trajectory. Further, the error detector is configured to determine an error between the output signal and a current target phase trajectory value that precedes the portion of the target phase trajectory, where the determination of the error is independent of the next adjustment of the output signal. Moreover, the control loop filter is configured to control the signal generator in accordance with both the next adjustment and the error to generate a phase profile.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: July 2, 2013
    Assignee: International Business Machines Corporation
    Inventors: Danny Elad, Daniel J. Friedman, Alexander V. Rylyakov, Jose A. Tierno
  • Patent number: 8429107
    Abstract: A system, method, and design structure for address-event-representation network simulation are provided. The system includes a hardware structure with a plurality of interconnected processing modules configured to simulate a plurality of interconnected nodes. To simulate each node, the hardware structure includes a source table configured to receive an input message and identify a weight associated with a source of the input message. The hardware structure also includes state management logic configured to update a node state as a function of the identified weight, and generate an output signal responsive to the updated node state. The hardware structure further includes a target table configured to generate an output message in response to the output signal, identify a target to receive the output message, and transmit the output message. The hardware structure may further include learning logic configured to combine information about input messages and generated output signals, and to update weights.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: April 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Monty M. Denneau, Daniel J. Friedman, Ralph Linsker, Mark B. Ritter
  • Publication number: 20130076449
    Abstract: Techniques for improved tuning control of varactor circuits are disclosed. For example, an apparatus comprises a plurality of varactors for tuning a frequency value. The plurality of varactors comprises approximately sqrt(2N) varactors, where N is a number of tunings steps and the plurality of varactors are respectively sized as 1x, 2x, 3x, 4x, . . . , approximately sqrt(2N)x, and where x is a unit of capacitance. A given one of the N tuning steps may be represented by more than one combination of varactors. This may be referred to as redundant numbering.
    Type: Application
    Filed: September 26, 2011
    Publication date: March 28, 2013
    Applicant: International Business Machines Corporation
    Inventors: Herschel A. Ainspan, Daniel J. Friedman, Alexander V. Rylyakov, Jose A. Tierno
  • Publication number: 20130069831
    Abstract: Systems, methods, devices and apparatuses directed to transceiver devices are disclosed. In accordance with one method, a first set of antenna positions in a first section of a set of sections of a circuit layout for the circuit package is selected. The method further includes selecting another set of antenna positions in another section of the circuit layout such that an arrangement of selected antenna positions of the other set is different from an arrangement of selected antenna positions of a previously selected set of antenna positions. The selecting another set of positions in another section is iterated until selections have been made for a total number of antennas. The selecting the other set is performed such that consecutive unselected positions in the other section do not exceed a predetermined number of positions. In addition, antenna elements are formed at the selected positions to fabricate the circuit package.
    Type: Application
    Filed: February 13, 2012
    Publication date: March 21, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: DANIEL J. FRIEDMAN, Duixian Liu, Arun S. Natarajan, Scott K. Reynolds, Alberto Valdes Garcia
  • Publication number: 20120317062
    Abstract: A reconfigurable neural network circuit is provided. The reconfigurable neural network circuit comprises an electronic synapse array including multiple synapses interconnecting a plurality of digital electronic neurons. Each neuron comprises an integrator that integrates input spikes and generates a signal when the integrated inputs exceed a threshold. The circuit further comprises a control module for reconfiguring the synapse array. The control module comprises a global final state machine that controls timing for operation of the circuit, and a priority encoder that allows spiking neurons to sequentially access the synapse array.
    Type: Application
    Filed: August 16, 2012
    Publication date: December 13, 2012
    Applicant: International Business Machines Corporation
    Inventors: Bernard V. BREZZO, Leland Chang, Steven K. Esser, Daniel J. Friedman, Yong Liu, Dharmendra S. Modha, Robert K. Montoye, Bipin Rajendran, Jae-sun Seo, Jose A. Tierno
  • Publication number: 20120314721
    Abstract: Methods and apparatus are provided for timing recovery for an input/output bus with link redundancy. A parallel input/output interface receiver includes a plurality of data receivers, each configured to respectively receive input data from a respective one of n+m channels, where n is an integer greater than one and m is an integer greater than or equal to one. The input data is non-calibration data for the n channels and is calibration data for the m channels. The interface receiver further includes a first phase adjustor configured to provide a first clock signal to the plurality of data receivers for sampling of only the non-calibration data at any given time, and a second phase adjustor configured to provide a second clock signal to the plurality of data receivers for sampling of only the calibration data at any given time.
    Type: Application
    Filed: June 10, 2011
    Publication date: December 13, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: JOHN F. BULZACCHELLI, Timothy O. Dickson, Daniel J. Friedman, Yong Liu, Sergey V. Rylov
  • Publication number: 20120259804
    Abstract: A reconfigurable neural network circuit is provided. The reconfigurable neural network circuit comprises an electronic synapse array including multiple synapses interconnecting a plurality of digital electronic neurons. Each neuron comprises an integrator that integrates input spikes and generates a signal when the integrated inputs exceed a threshold. The circuit further comprises a control module for reconfiguring the synapse array. The control module comprises a global final state machine that controls timing for operation of the circuit, and a priority encoder that allows spiking neurons to sequentially access the synapse array.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 11, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bernard V. Brezzo, Leland Chang, Steven K. Esser, Daniel J. Friedman, Yong Liu, Dharmendra S. Modha, Robert K. Montoye, Bipin Rajendran, Jae-sun Seo, Jose A. Tierno
  • Publication number: 20120242383
    Abstract: Phase profile generator systems and methods are disclosed. A system includes a signal generator, a target phase trajectory module, an error detector and a control loop filter. The signal generator is configured to generate an output signal. In addition, the target phase trajectory module is configured to track a target phase trajectory and determine a next adjustment of the output signal to conform the output signal to a portion of the target phase trajectory. Further, the error detector is configured to determine an error between the output signal and a current target phase trajectory value that precedes the portion of the target phase trajectory, where the determination of the error is independent of the next adjustment of the output signal. Moreover, the control loop filter is configured to control the signal generator in accordance with both the next adjustment and the error to generate a phase profile.
    Type: Application
    Filed: March 23, 2011
    Publication date: September 27, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: DANNY ELAD, DANIEL J. FRIEDMAN, ALEXANDER V. RYLYAKOV, JOSE A. TIERNO
  • Patent number: 8222936
    Abstract: Phase and frequency detectors and techniques are disclosed. For example, apparatus comprises a first circuit for receiving first and second clock signals and for generating at least one signal indicative of a phase difference between the first and second clock signals. The apparatus also comprises a second circuit for receiving the at least one signal generated by the first circuit and, in response to the at least one received signal, generating at least one output signal, wherein a frequency associated with the at least one output signal is proportional to a frequency difference between the first and second clock signals.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: July 17, 2012
    Assignee: International Business Machines Corporation
    Inventors: Daniel J. Friedman, Alexander V. Rylyakov, José A. Tierno
  • Publication number: 20120153910
    Abstract: Dual-loop voltage regulator circuits and methods in which a dual-loop voltage regulation framework is implemented with a first inner loop having a bang-bang voltage regulator to achieve nearly instantaneous response time, and a second outer loop, which is slower in operating speed than the first inner loop, to controllably adjust a trip point of the bang-bang voltage regulator to achieve high DC accuracy.
    Type: Application
    Filed: August 19, 2011
    Publication date: June 21, 2012
    Applicant: International Business Machines Corporation
    Inventors: John F. Bulzacchelli, Carrie E. Cox, Zeynep Toprak-Deniz, Daniel J. Friedman, Joseph A. Iadanza, Todd M. Rasmus
  • Publication number: 20120153909
    Abstract: Voltage regulator circuits and methods implementing hybrid fast-slow passgate control circuitry are provided to minimize the ripple amplitude of a regulated voltage output. In one aspect, a voltage regulator circuit includes a comparator, a first passgate device, a second passgate device, and a bandwidth limiting control circuit. The comparator compares a reference voltage to a regulated voltage at an output node of the voltage regulator circuit and generates a first control signal on a first gate control path based on a result of the comparing. The first and second passgate devices are connected to the output node of the regulator circuit. The first passgate device is controlled in a bang-bang mode of operation by the first control signal to supply current to the output node. The bandwidth limiting control circuit has an input connected to the first gate control path and an output connected to the second passgate device.
    Type: Application
    Filed: August 19, 2011
    Publication date: June 21, 2012
    Applicant: International Business Machines Corporation
    Inventors: William L. Bucossi, John F. Bulzacchelli, Mohak Chhabra, Zeynep Toprak-Deniz, Daniel J. Friedman, Joseph A. Iadanza, Todd M. Rasmus
  • Patent number: 8183948
    Abstract: A design for an oscillator, and a PLL incorporating such an oscillator, which takes up little physical area but maintains a large tuning range and low phase noise. Two LC-tanks are nested and switched. Through tuning the inactive tank, the range of the active tank may be increased and finer tuning becomes possible.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: May 22, 2012
    Assignee: International Business Machines Corporation
    Inventors: Herschel A. Ainspan, John F. Bulzacchelli, Daniel J. Friedman, Ankush Goel, Alexander V. Rylyakov
  • Publication number: 20120112842
    Abstract: A design for an oscillator, and a PLL incorporating such an oscillator, which takes up little physical area but maintains a large tuning range and low phase noise. Two LC-tanks are nested and switched. Through tuning the inactive tank, the range of the active tank may be increased and finer tuning becomes possible.
    Type: Application
    Filed: January 16, 2012
    Publication date: May 10, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: HERSCHEL A. AINSPAN, JOHN F. BULZACCHELLI, DANIEL J. FRIEDMAN, ANKUSH GOEL, ALEXANDER V. RYLYAKOV
  • Publication number: 20120084241
    Abstract: Embodiments of the invention relate to a neuromorphic network for producing spike-timing dependent plasticity. The neuromorphic network includes a plurality of electronic neurons and an interconnect circuit coupled for interconnecting the plurality of electronic neurons. The interconnect circuit includes plural synaptic devices for interconnecting the electronic neurons via axon paths, dendrite paths and membrane paths. Each synaptic device includes a variable state resistor and a transistor device with a gate terminal, a source terminal and a drain terminal, wherein the drain terminal is connected in series with a first terminal of the variable state resistor.
    Type: Application
    Filed: September 30, 2010
    Publication date: April 5, 2012
    Applicant: International Business Machines Corporation
    Inventors: Daniel J. Friedman, Seongwon Kim, Chung H. Lam, Dharmendra S. Modha, Bipin Rajendran, Jose A. Tierno
  • Patent number: 8138840
    Abstract: A digital phase locked loop (DPLL) and method include an adjustable delay line configured to receive a reference clock as an input and to output a dithered reference clock signal. A phase and frequency detector (PFD) is configured to compare the dithered reference clock signal with a feedback clock signal to determine phase and frequency differences between the dithered reference clock signal and the feedback clock signal. A digitally controlled oscillator (DCO) is configured to receive early or late determinations from the PFD to adjust an output in accordance therewith, wherein the dithered reference clock signal distributes jitter response to enhance overall operation of the DPLL.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: Herschel A. Ainspan, John F. Bulzacchelli, Zeynep Toprak Deniz, Daniel J. Friedman, Alexander V. Rylyakov, Jose A. Tierno
  • Patent number: 8085841
    Abstract: A decision feedback equalizer (DFE) and method including a branch coupled to an input and including a sample-and-hold element configured to receive and sample a received input signal from the input and a current-integrating summer. The current-integrating summer is coupled to an output of the sample-and-hold element. The summer is configured to receive and sum currents representing at least one previous decision and an input sample. The at least one previous decision and the input sample are integrated onto a node, wherein the input sample is held constant during an integration period, thereby mitigating the effects of input transitions on an output of the summer.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: December 27, 2011
    Assignee: International Business Machines Corporation
    Inventors: John F. Bulzacchelli, Timothy O. Dickson, Daniel J. Friedman, Alexander V. Rylyakov