Patents by Inventor Ding Wang

Ding Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9859252
    Abstract: An integrated circuit structure includes a die including a semiconductor substrate, dielectric layers over the semiconductor substrate, an interconnect structure including metal lines and vias in the dielectric layers, a plurality of channels extending from inside the semiconductor substrate to inside the dielectric layers, and a dielectric film over the interconnect structure and sealing portions of the plurality of channels. The plurality of channels is configured to allow a fluid to flow through.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: January 2, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Ming Ching, Ching-Wen Hsiao, Tsung-Ding Wang, Ming Hung Tseng, Chen-Shien Chen
  • Publication number: 20170371108
    Abstract: A multiple optical fiber connection apparatus comprises an outer housing to receive a plurality of optical fibers and a collar body disposed within the housing having a fiber comb portion disposed at a front portion of the collar body. The fiber comb portion includes an array of grooves, with each groove configured to guide an optical fiber disposed therein, and a ramp section adjacent the groove array, wherein the ramp section including a gradual rising portion.
    Type: Application
    Filed: August 18, 2017
    Publication date: December 28, 2017
    Inventors: Mark R. Richmond, Johnny P. Bryant, Ding Wang, James R. Bylander, Nathan Stipek
  • Publication number: 20170352632
    Abstract: Methods of forming connectors and packaged semiconductor devices are disclosed. In some embodiments, a connector is formed by forming a first photoresist layer over an interconnect structure, and patterning the first photoresist layer. The patterned first photoresist layer is used to form a first opening in an interconnect structure. The patterned first photoresist is removed, and a second photoresist layer is formed over the interconnect structure and in the first opening. The second photoresist layer is patterned to form a second opening over the interconnect structure in the first opening. The second opening is narrower than the first opening. At least one metal layer is plated through the patterned second photoresist layer to form the connector.
    Type: Application
    Filed: June 26, 2017
    Publication date: December 7, 2017
    Inventors: Jung Wei Cheng, Hai-Ming Chen, Chien-Hsun Lee, Hao-Cheng Hou, Hung-Jen Lin, Chun-Chih Chuang, Ming-Che Liu, Tsung-Ding Wang
  • Patent number: 9837292
    Abstract: A method includes placing an underfill-shaping cover on a package component of a package, with a device die of the package extending into an opening of the underfill-shaping cover. An underfill is dispensed into the opening of the underfill-shaping cover. The underfill fills a gap between the device die and the package component through capillary. The method further includes, with the underfill-shaping cover on the package component, curing the underfill. After the curing the underfill, the underfill-shaping cover is removed from the package.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: December 5, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chih Chuang, Jung Wei Cheng, Chun-Hung Lin, Tsung-Ding Wang
  • Patent number: 9824902
    Abstract: An integrated fan-out package including a chip module, a second integrated circuit, a second insulating encapsulation, and a redistribution circuit structure is provided. The chip module includes a first insulating encapsulation and a first integrated circuit embedded in the first insulating encapsulation, and the first integrated circuit includes a first surface and first conductive terminals on the first surface. The second integrated circuit includes a second surface and second conductive terminals on the second surface. The chip module and the second integrated circuit are embedded in the second insulating encapsulation. The first and second conductive terminals are accessibly exposed from the first and second insulating encapsulation. The redistribution circuit structure covers the first surface, the second surfaces, the first insulating encapsulation, and the second insulating encapsulation. The redistribution circuit structure is electrically connected to the first and second conductive terminals.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: November 21, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hao-Cheng Hou, Chien-Hsun Lee, Chen-Hua Yu, Chung-Shi Liu, Jung-Wei Cheng, Ping-Kang Huang, Sao-Ling Chiu, Tsung-Ding Wang
  • Patent number: 9806042
    Abstract: A semiconductor device includes a semiconductor die having first and second conductive pads, and a substrate having third and fourth bonding pads. A width ratio of the first conductive pad over the third bonding pad at an inner region is different from a width ratio of the second conductive pad over the fourth bonding pad at an outer region.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: October 31, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsien-Wei Chen, Ying-Ju Chen, Tsung-Yuan Yu, Yu-Feng Chen, Tsung-Ding Wang
  • Patent number: 9793242
    Abstract: A method includes bonding a first device die onto a top surface of a package substrate, and performing an expose molding on the first device die and the package substrate. At least a lower portion of the first device die is molded in a molding material. A top surface of the molding material is level with or higher than a top surface of the first device die. After the expose molding, a second device die is bonded onto a top surface of the first device die. The second device die is electrically coupled to the first device die through through-silicon vias in a semiconductor substrate of the first device die.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: October 17, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Chih Liu, Hai-Ming Chen, Wei-Ting Lin, Jing Ruei Lu, Tsung-Ding Wang
  • Patent number: 9791635
    Abstract: An optical fiber connector for terminating a fiber cable comprising a plurality of optical fibers, comprises an outer connector housing, a ferrule essentially free of adhesive, a backbone, and a collar body disposed between the ferrule and backbone. The collar body includes a remote gripping region to remotely grip the plurality of optical fibers outside of the ferrule. In some aspects, the collar body includes a fiber comb portion that separates potentially tangled fibers, arranges the plurality of fibers in a uniform pitch, and provides for straightforward feeding of the fiber array into ferrule bores during a fiber cable insertion process. In some aspects, the connector includes a resilient element disposed between the backbone and a rear portion of the collar body, and an intermediate spring element disposed between a front portion of the collar body and a rear portion of the ferrule.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: October 17, 2017
    Assignee: 3M Innovative Properties Company
    Inventors: Mark R. Richmond, Johnny P. Bryant, Ding Wang, James R. Bylander, Nathan Stipek
  • Patent number: 9780064
    Abstract: A method of forming a package assembly includes forming a no-flow underfill layer on a substrate. The method further includes attaching a semiconductor die to the substrate. The semiconductor die comprises a bump and a molding compound layer in physical contact with a lower portion of the bump. An upper portion of the bump is in physical contact with the no-flow underfill layer.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: October 3, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hung-Jen Lin, Tsung-Ding Wang, Chien-Hsiun Lee, Wen-Hsiung Lu, Ming-Da Cheng, Chung-Shi Liu
  • Patent number: 9768145
    Abstract: A semiconductor device and a method of making the same are provided. A first die and a second die are placed over a carrier substrate. A first molding material is formed adjacent to the first die and the second die. A first redistribution layer is formed overlying the first molding material. A through via is formed over the first redistribution layer. A package component is on the first redistribution layer next to the copper pillar. The package component includes a second redistribution layer. The package component is positioned so that it overlies both the first die and the second die in part. A second molding material is formed adjacent to the package component and the first copper pillar. A third redistribution layer is formed overlying the second molding material. The second redistribution layer is placed on a substrate and bonded to the substrate.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: September 19, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Kuo-Chung Yee, Tsung-Ding Wang, Chien-Hsun Lee
  • Patent number: 9754917
    Abstract: A method of forming an integrated circuit structure is provided. In an embodiment, the method includes bonding top dies onto a bottom wafer and then molding a first molding material onto and in between the top dies and the bottom wafer. The bottom wafer, the top dies, and the first molding material are sawed to form molding units. Each of the molding units includes one of the top dies and a bottom die sawed from the bottom wafer. The molding units are bonded onto a package substrate and a second molding material is molding onto the one of the molding units and the package substrate. Thereafter, the package substrate and the second molding material are sawed to form package-molded units.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: September 5, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Ding Wang, Bo-I Lee, Chien-Hsun Lee
  • Publication number: 20170250166
    Abstract: An embodiment device includes a first die, a second die electrically connected to the first die, and a heat dissipation surface on a surface of the second die. The device further includes a package substrate electrically connected to the first die. The package substrate includes a through-hole, and the second die is at least partially disposed in the through hole.
    Type: Application
    Filed: May 15, 2017
    Publication date: August 31, 2017
    Inventors: Jung Wei Cheng, Tsung-Ding Wang, Mirng-Ji Lii, Chien-Hsun Lee
  • Publication number: 20170236763
    Abstract: A device includes a bottom package component that includes a bottom die, and a dam over a top surface of the bottom die. The dam has a plurality of sides forming a partial ring, with an air gap surrounded by the plurality of side portions. The air gap overlaps the bottom die. A top package component is bonded to the bottom package component, wherein the air gap separates a bottom surface of the top package component from the bottom die.
    Type: Application
    Filed: May 2, 2017
    Publication date: August 17, 2017
    Inventors: Chen-Hua Yu, Tsung-Ding Wang, Chen-Shien Chen, Chung-Shi Liu, Jiun Yi Wu
  • Publication number: 20170229410
    Abstract: A semiconductor device includes a semiconductor substrate, a conductive pad on the semiconductor substrate, and a conductor over the conductive pad. The semiconductor device further has a molding compound surrounding the semiconductor substrate, the conductive pad and the conductor. In the semiconductor device, the conductor has a stud shape.
    Type: Application
    Filed: February 5, 2016
    Publication date: August 10, 2017
    Inventors: Hao-Cheng HOU, Jung Wei CHENG, Tsung-Ding WANG, Ming-Che LIU
  • Patent number: 9721916
    Abstract: An integrated circuit structure includes an alignment bump and an active electrical connector. The alignment bump includes a first non-solder metallic bump. The first non-solder metallic bump forms a ring encircling an opening therein. The active electrical connector includes a second non-solder metallic bump. A surface of the first non-solder metallic bump and a surface of the second non-solder metallic bump are substantially coplanar with each other.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: August 1, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jung Wei Cheng, Tsung-Ding Wang, Chien-Hsun Lee
  • Patent number: 9691723
    Abstract: Methods of forming connectors and packaged semiconductor devices are disclosed. In some embodiments, a connector is formed by forming a first photoresist layer over an interconnect structure, and patterning the first photoresist layer with a pattern for a first portion of a connector. A first metal layer is plated through the patterned first photoresist layer to form the first portion of the connector which has a first width. A second photoresist layer is formed over the interconnect structure and the first portion of the connector. The second photoresist layer is patterned with a pattern for a second portion of the connector. A second metal layer is plated through the patterned second photoresist layer to form the second portion of the connector over the first portion of the connector. The second portion of the connector has a second width, the second width being less than the first width.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: June 27, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jung Wei Cheng, Hai-Ming Chen, Chien-Hsun Lee, Hao-Cheng Hou, Hung-Jen Lin, Chun-Chih Chuang, Ming-Che Liu, Tsung-Ding Wang
  • Patent number: 9673174
    Abstract: System and method for bonding semiconductor substrates is presented. A preferred embodiment comprises forming a buffer layer over a surface of a semiconductor substrate while retaining TSVs that protrude from the buffer layer in order to prevent potential voids that might form. A protective layer is formed on another semiconductor substrate that will be bonded to the first semiconductor substrate. The two substrates are aligned and bonded together, with the buffer layer preventing any short circuit contacts to the surface of the original semiconductor substrate.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: June 6, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Ding Wang, Chen-Shien Chen, Kai-Ming Ching, Bo-I Lee, Chien-Hsun Lee
  • Patent number: 9673158
    Abstract: A device includes a substrate, a metal pad over the substrate, and a passivation layer having a portion over the metal pad. A post-passivation interconnect (PPI) is electrically coupled to the metal pad, wherein the PPI includes a portion over the metal pad and the passivation layer. A polymer layer is over the PPI. A solder ball is over the PPI. A compound includes a portion adjoining the solder ball and the polymer layer, wherein the compound includes flux and a polymer.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: June 6, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Ding Wang, Hung-Jen Lin, Chien-Hsun Lee
  • Publication number: 20170148778
    Abstract: Packages structure and methods of forming them are discussed. A structure includes a first die, a first encapsulant at least laterally encapsulating the first die, and a redistribution structure on the first die and the first encapsulant. The second die is attached by an external electrical connector to the redistribution structure. The second die is on an opposite side of the redistribution structure from the first die. A second encapsulant is on the redistribution structure and at least laterally encapsulates the second die. The second encapsulant has a surface distal from the redistribution structure. A conductive feature extends from the redistribution structure through the second encapsulant to the surface of the second encapsulant. A conductive pillar is on the conductive feature, and the conductive pillar protrudes from the surface of the second encapsulant.
    Type: Application
    Filed: February 6, 2017
    Publication date: May 25, 2017
    Inventors: Hao-Cheng Hou, Ming-Che Liu, Chun-Chih Chuang, Jung Wei Cheng, Tsung-Ding Wang, Hung-Jen Lin
  • Patent number: 9653443
    Abstract: An embodiment device includes a first die, a second die electrically connected to the first die, and a heat dissipation surface on a surface of the second die. The device further includes a package substrate electrically connected to the first die. The package substrate includes a through-hole, and the second die is at least partially disposed in the through hole.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: May 16, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jung Wei Cheng, Tsung-Ding Wang, Mirng-Ji Lii, Chien-Hsun Lee