Patents by Inventor Feras Eid

Feras Eid has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11328986
    Abstract: Disclosed herein are capacitor-wirebond pad structures for integrated circuit (IC) packages, as well as related methods and devices. For example, in some embodiments, an IC package may include a die and an IC package support. The IC package support may include a capacitor, and the capacitor may include a first capacitor plate, a second capacitor plate, and a capacitor dielectric between the first capacitor plate and the second capacitor plate. The die may be wirebonded to the first capacitor plate.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: May 10, 2022
    Assignee: Intel Corporation
    Inventors: Aleksandar Aleksov, Feras Eid, Georgios Dogiamis, Telesphor Kamgaing, Johanna M. Swan
  • Patent number: 11328979
    Abstract: A device package and a method of forming a device package are described. The device package includes a plurality of posts disposed on a substrate. Each post has a top surface and a bottom surface that is opposite from the top surface. The device package also has one or more dies disposed on the substrate. The dies are adjacent to the plurality of posts on the substrate. The device package further includes a lid disposed above the plurality of posts and the one or more dies on the substrate. The lid has a top surface and a bottom surface that is opposite from the top surface. Lastly, an adhesive layer attaches the top surfaces of the plurality of posts and the bottom surface of the lid. The device package may also include one or more thermal interface materials (TIMs) disposed on the dies.
    Type: Grant
    Filed: September 30, 2017
    Date of Patent: May 10, 2022
    Assignee: Intel Corporation
    Inventors: Feras Eid, Dinesh Padmanabhan Ramalekshmi Thanu, Sergio Chan Arguedas, Johanna M. Swan, John J. Beatty
  • Patent number: 11322456
    Abstract: A foundation layer having a stiffener and methods of forming a stiffener are described. One or more dies are formed over the foundation layer. Each die has a front side surface that is electrically coupled to the foundation layer and a back side surface that is opposite from the front side surface. A stiffening layer (or a stiffener) is formed on the back side surface of at least one of the dies. The stiffening layer may be directly coupled to the back side surface of the one or more dies without an adhesive layer. The stiffening layer may include one or more materials, including at least one of a metal, a metal alloy, and a ceramic. The stiffening layer may be formed to reduce warpage based on the foundation layer and the dies. The one or more materials of the stiffening layer can be formed using a cold spray.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: May 3, 2022
    Assignee: Intel Corporation
    Inventors: Feras Eid, Venkata Suresh R. Guthikonda, Shankar Devasenathipathy, Chandra M. Jha, Je-Young Chang, Kyle Yazzie, Prasanna Raghavan, Pramod Malatkar
  • Patent number: 11316497
    Abstract: Embodiments may relate to a die such as an acoustic wave resonator (AWR) die. The die may include a first filter and a second filter in the die body. The die may further include an electromagnetic interference (EMI) structure that surrounds at least one of the filters. Other embodiments may be described or claimed.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: April 26, 2022
    Assignee: Intel Corporation
    Inventors: Georgios Dogiamis, Aleksandar Aleksov, Feras Eid, Telesphor Kamgaing, Johanna M. Swan
  • Patent number: 11310907
    Abstract: Embodiments may relate to a microelectronic package or a die thereof which includes a die, logic, or subsystem coupled with a face of the substrate. An inductor may be positioned in the substrate. Electromagnetic interference (EMI) shield elements may be positioned within the substrate and surrounding the inductor. Other embodiments may be described or claimed.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: April 19, 2022
    Assignee: Intel Corporation
    Inventors: Georgios Dogiamis, Aleksandar Aleksov, Feras Eid, Telesphor Kamgaing, Johanna M. Swan
  • Patent number: 11302618
    Abstract: Disclosed herein are microelectronic assemblies with integrated perovskite layers, and related devices and methods. For example, in some embodiments, a microelectronic assembly may include an organic package substrate portion having a surface with a conductive layer, and a perovskite conductive layer on the conductive layer. In some embodiments, a microelectronic assembly may include an organic package substrate portion having a surface with a conductive layer, a perovskite conductive layer having a first crystalline structure on the conductive layer, and a perovskite dielectric layer having a second crystalline structure on the perovskite conductive layer. In some embodiments, the first and second crystalline structures have a same orientation.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: April 12, 2022
    Assignee: Intel Corporation
    Inventors: Feras Eid, Shawna M. Liff, Thomas Sounart, Johanna M. Swan
  • Patent number: 11302599
    Abstract: A heat dissipation device may be formed as a thermally conductive structure having at least one thermal isolation structure extending at least partially through the thermally conductive structure. The heat dissipation device may be thermally connected to a plurality of integrated circuit devices, such that the at least one thermal isolation structure is positioned between at least two integrated circuit devices. The heat dissipation device allows for heat transfer away from each of the plurality of integrated circuit devices, such as in a z-direction within the thermally conductive structure, while substantially preventing heat transfer in either the x-direction and/or the y-direction within the thermally isolation structure, such that thermal cross-talk between integrated circuit devices is reduced.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: April 12, 2022
    Assignee: Intel Corporation
    Inventors: Feras Eid, Adel Elsherbini, Johanna Swan
  • Patent number: 11296040
    Abstract: Disclosed herein are structures, devices, and methods for electrostatic discharge protection (ESDP) in integrated circuits (ICs). For example, in some embodiments, an IC package support may include: a first conductive structure in a dielectric material; a second conductive structure in the dielectric material; and a material in contact with the first conductive structure and the second conductive structure, wherein the material includes a polymer, and the material is different from the dielectric material. The material may act as a dielectric material below a trigger voltage, and as a conductive material above the trigger voltage.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: April 5, 2022
    Assignee: Intel Corporation
    Inventors: Adel A. Elsherbini, Feras Eid, Johanna M. Swan, Aleksandar Aleksov, Veronica Aleman Strong
  • Publication number: 20220102261
    Abstract: Embodiments of the invention include an electrical package and methods of forming the package. In one embodiment, a transformer may be formed in the electrical package. The transformer may include a first conductive loop that is formed over a first dielectric layer. A thin dielectric spacer material may be used to separate the first conductive loop from a second conductive loop that is formed in the package. Additional embodiments of the invention include forming a capacitor formed in the electrical package. For example, the capacitor may include a first capacitor plate that is formed over a first dielectric layer. A thin dielectric spacer material may be used to separate the first capacitor plate form a second capacitor plate that is formed in the package. The thin dielectric spacer material in the transformer and capacitor allow for increased coupling factors and capacitance density in electrical components.
    Type: Application
    Filed: December 7, 2021
    Publication date: March 31, 2022
    Inventors: Adel A. ELSHERBINI, Mathew J. MANUSHAROW, Krishna BHARATH, William J. LAMBERT, Robert L. SANKMAN, Aleksandar ALEKSOV, Brandon M. RAWLINGS, Feras EID, Javier SOTO GONZALEZ, Meizi JIAO, Suddhasattwa NAD, Telesphor KAMGAING
  • Publication number: 20220102270
    Abstract: Disclosed herein are structures, devices, and methods for electrostatic discharge protection (ESDP) in integrated circuits (ICs). In some embodiments, an IC component may include a conductive contact structure that includes a first contact element and a second contact element. The first contact element may be exposed at a face of the IC component, the first contact element may be between the face of the IC component and the second contact element, the second contact element may be spaced apart from the first contact element by a gap, and the second contact element may be in electrical contact with an electrical pathway in the IC component.
    Type: Application
    Filed: December 13, 2021
    Publication date: March 31, 2022
    Applicant: Intel Corporation
    Inventors: Adel A. Elsherbini, Feras Eid, Johanna M. Swan, Aleksandar Aleksov, Veronica Aleman Strong
  • Patent number: 11289431
    Abstract: Disclosed herein are structures, devices, and methods for electrostatic discharge protection (ESDP) in integrated circuits (ICs). In some embodiments, an IC component may include: a first conductive structure; a second conductive structure; and a material in contact with the first conductive structure and the second conductive structure, wherein the material has a first electrical conductivity before illumination of the material with optical radiation and a second electrical conductivity, different from the first electrical conductivity, after illumination of the material with optical radiation.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: March 29, 2022
    Assignee: Intel Corporation
    Inventors: Feras Eid, Veronica Aleman Strong, Aleksandar Aleksov, Adel A. Elsherbini, Johanna M. Swan
  • Publication number: 20220093531
    Abstract: A switch in a package substrate of a microelectronic package is provided, the switch comprising: an actuator plate; a strike plate; and a connecting element mechanically coupling the actuator plate and the strike plate. The switch is configured to move within a cavity inside the package substrate between an open position and a closed position, a conductive material is coupled to the switch and to a ground via in the package substrate, and the conductive material is configured to move with the switch, such that the switch is conductively coupled to the ground via in the open position and the closed position.
    Type: Application
    Filed: December 7, 2021
    Publication date: March 24, 2022
    Applicant: Intel Corporation
    Inventors: Feras Eid, Veronica Aleman Strong, Aleksandar Aleksov, Adel A. Elsherbini, Johanna M. Swan
  • Publication number: 20220093546
    Abstract: Disclosed herein are microelectronic assemblies including microelectronic components that are coupled together by direct bonding, as well as related structures and techniques. For example, in some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component coupled to the first microelectronic component by a direct bonding region, wherein the direct bonding region includes at least part of an inductor.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 24, 2022
    Applicant: Intel Corporation
    Inventors: Adel A. Elsherbini, Krishna Bharath, Kevin P. O'Brien, Kimin Jun, Han Wui Then, Mohammad Enamul Kabir, Gerald S. Pasdast, Feras Eid, Aleksandar Aleksov, Johanna M. Swan, Shawna M. Liff
  • Publication number: 20220093547
    Abstract: Disclosed herein are microelectronic assemblies including microelectronic components that are coupled together by direct bonding, as well as related structures and techniques. For example, in some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component coupled to the first microelectronic component by a direct bonding region, wherein the direct bonding region includes at least part of an inductor.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 24, 2022
    Applicant: Intel Corporation
    Inventors: Adel A. Elsherbini, Zhiguo Qian, Gerald S. Pasdast, Mohammad Enamul Kabir, Han Wui Then, Kimin Jun, Kevin P. O'Brien, Johanna M. Swan, Shawna M. Liff, Aleksandar Aleksov, Feras Eid
  • Publication number: 20220093517
    Abstract: Disclosed herein are microelectronic assemblies including microelectronic components that are coupled together by direct bonding, as well as related structures and techniques. For example, in some embodiments, a microelectronic assembly may include an interposer, including an organic dielectric material, and a microelectronic component coupled to the interposer by direct bonding.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 24, 2022
    Applicant: Intel Corporation
    Inventors: Aleksandar Aleksov, Adel A. Elsherbini, Shawna M. Liff, Johanna M. Swan, Feras Eid, Randy B. Osborne, Van H. Le
  • Publication number: 20220093561
    Abstract: Disclosed herein are microelectronic assemblies including direct bonding, as well as related structures and techniques. For example, in some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component coupled to the first microelectronic component by a direct bonding region, wherein the direct bonding region includes a first subregion and a second subregion, and the first subregion has a greater metal density than the second subregion. In some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component coupled to the first microelectronic component by a direct bonding region, wherein the direct bonding region includes a first metal contact and a second metal contact, the first metal contact has a larger area than the second metal contact, and the first metal contact is electrically coupled to a power/ground plane of the first microelectronic component.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 24, 2022
    Applicant: Intel Corporation
    Inventors: Feras Eid, Adel A. Elsherbini, Aleksandar Aleksov, Shawna M. Liff, Johanna M. Swan
  • Publication number: 20220093725
    Abstract: Disclosed herein are capacitors and resistors at direct bonding interfaces in microelectronic assemblies, as well as related structures and techniques. For example, in some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component, wherein a direct bonding interface of the second microelectronic component is direct bonded to a direct bonding interface of the first microelectronic component, the microelectronic assembly includes a sensor, the sensor includes a first sensor plate and a second sensor plate, the first sensor plate is at the direct bonding interface of the first microelectronic component, and the second sensor plate is at the direct bonding interface of the second microelectronic component.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 24, 2022
    Applicant: Intel Corporation
    Inventors: Adel A. Elsherbini, Mohammad Enamul Kabir, Zhiguo Qian, Gerald S. Pasdast, Kimin Jun, Shawna M. Liff, Johanna M. Swan, Aleksandar Aleksov, Feras Eid
  • Publication number: 20220093492
    Abstract: Disclosed herein are microelectronic assemblies including direct bonding, as well as related structures and techniques. For example, in some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component coupled to the first microelectronic component by a direct bonding region, wherein the direct bonding region includes a first subregion and a second subregion, and the first subregion has a greater metal density than the second subregion. In some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component coupled to the first microelectronic component by a direct bonding region, wherein the direct bonding region includes a first metal contact and a second metal contact, the first metal contact has a larger area than the second metal contact, and the first metal contact is electrically coupled to a power/ground plane of the first microelectronic component.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 24, 2022
    Applicant: Intel Corporation
    Inventors: Adel A. Elsherbini, Krishna Bharath, Han Wui Then, Kimin Jun, Aleksandar Aleksov, Mohammad Enamul Kabir, Shawna M. Liff, Johanna M. Swan, Feras Eid
  • Patent number: 11282800
    Abstract: An inductor in a device package and a method of forming the inductor in the device package are described. The inductor includes a first conductive layer disposed on a substrate. The inductor also has one or more hybrid magnetic additively manufactured (HMAM) layers disposed over and around the first conductive layer to form one or more via openings over the first conductive layer. The inductor further includes one or more vias disposed into the one or more via openings, wherein the one or more vias are only disposed on the portions of the exposed first conductive layer. The inductor has a dielectric layer disposed over and around the one or more vias, the HMAM layers, and the substrate. The inductor also has a second conductive layer disposed over the one or more vias and the dielectric layer.
    Type: Grant
    Filed: September 30, 2017
    Date of Patent: March 22, 2022
    Assignee: Intel Corporation
    Inventors: Henning Braunisch, Feras Eid, Georgios C. Dogiamis
  • Patent number: 11282812
    Abstract: An integrated circuit structure may be formed having a first integrated circuit device, a second integrated circuit device electrically coupled to the first integrated circuit device with a plurality of device-to-device interconnects, and at least one jumping drops vapor chamber between the first integrated circuit device and the second integrated circuit device wherein at least one device-to-device interconnect of the plurality of device-to-device interconnects extends through the jumping drops vapor chamber. In one embodiment, the integrated circuit structure may include three or more integrated circuit devices with at least two jumping drops vapor chambers disposed between the three or more integrated circuit devices. In a further embodiment, the two jumping drops chambers may be in fluid communication with one another.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: March 22, 2022
    Assignee: Intel Corporation
    Inventors: Adel Elsherbini, Feras Eid, Johanna Swan