Patents by Inventor Fu Tang

Fu Tang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170117203
    Abstract: Improved methods and systems for passivating a surface of a high-mobility semiconductor and structures and devices formed using the methods are disclosed. The method includes providing a high-mobility semiconductor surface to a chamber of a reactor and exposing the high-mobility semiconductor surface to a gas-phase sulfur precursor to passivate the high-mobility semiconductor surface.
    Type: Application
    Filed: January 3, 2017
    Publication date: April 27, 2017
    Inventors: Fu Tang, Michael E. Givens, Qi Xie, Petri Raisanen
  • Publication number: 20170110313
    Abstract: A method for depositing a thin film onto a substrate is disclosed. In particular, the method forms a transitional metal silicate onto the substrate. The transitional metal silicate may comprise a lanthanum silicate or yttrium silicate, for example. The transitional metal silicate indicates reliability as well as good electrical characteristics for use in a gate dielectric material.
    Type: Application
    Filed: October 5, 2016
    Publication date: April 20, 2017
    Inventors: Fu Tang, Xiaoqiang Jiang, Qi Xie, Michael Eugene Givens, Jan Willem Maes, Jerry Chen
  • Patent number: 9627982
    Abstract: A flyback power converter includes a transformer which has a primary winding, a secondary winding, and an auxiliary winding; a power switch controlling the conduction of the primary winding; and a control circuit generating a control signal to control the power switch, wherein the control circuit is an integrated circuit having a current sensing pin for obtaining a current sensing signal of a current through the power switch. The flyback power converter further includes a temperature-sensitive resistor or a mode detection resistor coupled between the auxiliary winding and the current sensing pin. The temperature-sensitive resistor provides a temperature-related signal for the control circuit to perform an over-temperature protection, or the temperature-sensitive resistor provides a mode detection signal for the control circuit to determine an operation mode of the flyback power converter.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: April 18, 2017
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Kun-Yu Lin, Chien-Fu Tang, Hsin-Yi Wu, Kuang-Fu Chang
  • Patent number: 9614449
    Abstract: The present invention provides a flyback power converter with a programmable output and a control circuit and a control method thereof. The flyback power converter converts an input voltage to a programmable output voltage according to a setting signal, wherein the programmable output voltage switches between different levels. The flyback power converter includes: a transformer circuit, a power switch circuit, a current sense circuit, an opto-coupler circuit, and a control circuit. The control circuit adaptively adjusts an operation signal according to a level of the programmable output voltage, to maintain a same or relatively higher operation frequency of the operation signal when the programmable output voltage switches to a relatively lower level, so as to maintain a phase margin while supplying the same output current.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: April 4, 2017
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Kuang-Fu Chang, Tzu-Chen Lin, Chien-Fu Tang
  • Patent number: 9607963
    Abstract: A semiconductor device is disclosed, which includes: a substrate having a substrate body and a plurality of conductive pads formed on the substrate body, wherein each of the conductive pads has at least an opening formed in a first surface thereof; a semiconductor component having a plurality of bonding pads; a plurality of conductive elements formed between the bonding pads and the conductive pads and in the openings of the conductive pads; and an encapsulant formed between the substrate and the semiconductor component for encapsulating the conductive elements, thereby strengthening the bonding between the conductive elements and the conductive pads and consequently increasing the product yield.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: March 28, 2017
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chang-Fu Lin, Chin-Tsai Yao, Ming-Chin Chuang, Fu-Tang Huang
  • Publication number: 20170077047
    Abstract: An electronic device package and manufacturing method are provided, including steps of: providing a carrier having at least an electronic element and at least a package block disposed thereon, wherein the package block has a plurality of conductive posts bonded to the carrier; forming an encapsulant on the carrier for encapsulating the electronic element and the package block; and removing the carrier so as to expose the electronic element and the conductive posts from a surface of the encapsulant. As such, the invention dispenses with formation of through holes in the encapsulant for forming the conductive posts as in the prior art, thereby saving the fabrication cost.
    Type: Application
    Filed: December 29, 2015
    Publication date: March 16, 2017
    Inventors: Meng-Tsung Lee, Fu-Tang Huang
  • Patent number: 9570989
    Abstract: A control circuit of a power converter includes: an input signal detection circuit, configured to operably detect a magnitude of an input signal to generate a detection signal; a clock generation circuit, configured to operably generate a clock signal; an error detection circuit, configured to operably generate an error signal according to a reference signal and a feedback signal; a control signal generation circuit, coupled with the clock generation circuit and the error detection circuit, configured to operably control a switching frequency of a power switch according to the clock signal and the error signal; and a reverse adjusting circuit, coupled with the input signal detection circuit, configured to operably adjust the clock generation circuit or the control signal generation circuit according to the detection signal to configure the switching frequency of the power switch to be inversely proportional to the magnitude of the input signal.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: February 14, 2017
    Assignee: Ricktek Technology Corporation
    Inventors: Chien-Fu Tang, Isaac Y. Chen
  • Patent number: 9558931
    Abstract: Improved methods and systems for passivating a surface of a high-mobility semiconductor and structures and devices formed using the methods are disclosed. The method includes providing a high-mobility semiconductor surface to a chamber of a reactor and exposing the high-mobility semiconductor surface to a gas-phase sulfur precursor to passivate the high-mobility semiconductor surface.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: January 31, 2017
    Assignee: ASM IP Holding B.V.
    Inventors: Fu Tang, Michael Eugene Givens, Qi Xie, Petri Raisanen
  • Patent number: 9541929
    Abstract: A mixed mode compensation circuit for a power converter generate a digital signal according to a reference signal and a feedback signal which is related to the output voltage of the power converter, convert the digital signal into a first analog signal, offset the first analog signal with a variable offset value to generate a second analog signal, and filter out high-frequency components of the second analog signal to generate a third analog signal for stable output voltage of the power converter. The mixed mode compensation does not require large capacitors, and thus the circuit can be integrated into an integrated circuit.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: January 10, 2017
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chien-Fu Tang, Jiun-Hung Pan, Isaac Y. Chen
  • Publication number: 20170005647
    Abstract: A frequency jittering control circuit for a PFM power supply includes a pulse frequency modulator to generate a frequency jittering control signal to switch a power switch to generate an output voltage. The frequency jittering control circuit jitters an input signal or an on-time or off-time of the pulse frequency modulator to jitter the switching frequency of the power switch to thereby improve EMI issue.
    Type: Application
    Filed: September 16, 2016
    Publication date: January 5, 2017
    Inventors: Jiun-Hung PAN, Chien-Fu TANG, Isaac Y. CHEN
  • Publication number: 20160372543
    Abstract: In some aspects, methods of forming a metal selenide or metal telluride thin film are provided. According to some methods, a metal selenide or metal telluride thin film is deposited on a substrate in a reaction space in a cyclical deposition process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase selenium or tellurium reactant. In some aspects, methods of forming three-dimensional architectures on a substrate surface are provided. In some embodiments, the method includes forming a metal selenide or metal telluride interface layer between a substrate and a dielectric. In some embodiments, the method includes forming a metal selenide or metal telluride dielectric layer between a substrate and a conductive layer.
    Type: Application
    Filed: June 16, 2015
    Publication date: December 22, 2016
    Inventors: Qi Xie, Fu Tang, Michael Eugene Givens, Jan Willem Maes
  • Publication number: 20160372365
    Abstract: In some aspects, methods of forming a metal chalcogenide thin film are provided. According to some methods, a metal chalcogenide thin film is deposited on a substrate in a reaction space in a cyclical deposition process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase chalcogen reactant. In some aspects, methods of forming three-dimensional structure on a substrate surface are provided. In some embodiments, the method includes forming a metal chalcogenide dielectric layer between a substrate and a conductive layer. In some embodiments the method includes forming an MIS-type contact structure including a metal chalcogenide dielectric layer.
    Type: Application
    Filed: June 16, 2015
    Publication date: December 22, 2016
    Inventors: Fu Tang, Michael Eugene Givens, Jacob Huffman Woodruff, Qi Xie, Jan Willem Maes
  • Patent number: 9524944
    Abstract: A package structure is disclosed, which includes a substrate having a body, a plurality of conductive pads formed on the body and a surface passivation layer formed on the body and having a plurality of openings for exposing the conductive pads; a plurality of conductive vias formed in the openings of the surface passivation layer and electrically connected to the conductive pads; a plurality of circuits formed on the surface passivation layer and electrically connected to the conductive vias, wherein the circuits have a plurality of electrical contacts; at least a pattern portion formed on the surface passivation layer and intersecting with the circuits; and a second passivation layer formed on the surface passivation layer, the circuits and the pattern portion d having a plurality of openings for exposing portions of the electrical contacts of the circuits, thereby strengthening the bonding between the circuits and the passivation layers.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: December 20, 2016
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chun-Wei Yeh, Chun-Hsien Shen, Hsiu-Jung Li, Ya-Yi Lai, Fu-Tang Huang
  • Patent number: 9520351
    Abstract: A packaging substrate and a package structure are provided. The packaging substrate includes a plurality of dielectric layers, two of which have a difference in thickness; and a plurality of circuit layers alternately stacked with the dielectric layers. Therefore, the package warpage encountered in the prior art is avoided.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: December 13, 2016
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chang-Fu Lin, Chin-Tsai Yao, Ming-Chin Chuang, Ko-Cheng Liu, Fu-Tang Huang
  • Publication number: 20160358772
    Abstract: In some embodiments, a semiconductor surface having a high mobility semiconductor may be effectively passivated by nitridation, preferably using hydrazine, a hydrazine derivative, or a combination thereof. The surface may be the semiconductor surface of a transistor channel region. In some embodiments, a semiconductor surface oxide layer is formed at the semiconductor surface and the passivation is accomplished by forming a semiconductor oxynitride layer at the surface, with the nitridation contributing nitrogen to the surface oxide to form the oxynitride layer. The semiconductor oxide layer may be deposited by atomic layer deposition (ALD) and the nitridation may also be conducted as part of the ALD.
    Type: Application
    Filed: June 3, 2015
    Publication date: December 8, 2016
    Inventors: Qi Xie, Fu Tang, Michael Givens, Petri Raisanen, Jan Willem Maes
  • Publication number: 20160358835
    Abstract: In some embodiments, a semiconductor surface may be effectively passivated by nitridation, preferably using hydrazine, a hydrazine derivative, or a combination thereof. The surface may be the semiconductor surface of a transistor channel region. In some embodiments, native oxide is removed from the semiconductor surface and the surface is subsequently nitrided. In some other embodiments, a semiconductor surface oxide layer is formed at the semiconductor surface and the passivation is accomplished by forming a semiconductor oxynitride layer at the surface, with the nitridation contributing nitrogen to the surface oxide to form the oxynitride layer. The semiconductor oxide layer may be deposited by atomic layer deposition (ALD) and the nitridation may also be conducted as part of the ALD.
    Type: Application
    Filed: May 31, 2016
    Publication date: December 8, 2016
    Inventors: Qi Xie, Fu Tang, Michael Givens, Petri Raisanen, Jan Willem Maes, Xiaoqiang Jiang
  • Publication number: 20160327967
    Abstract: A mixed mode compensation circuit for a power converter generate a digital signal according to a reference signal and a feedback signal which is related to the output voltage of the power converter, convert the digital signal into a first analog signal, offset the first analog signal with a variable offset value to generate a second analog signal, and filter out high-frequency components of the second analog signal to generate a third analog signal for stable output voltage of the power converter. The mixed mode compensation does not require large capacitors, and thus the circuit can be integrated into an integrated circuit.
    Type: Application
    Filed: July 2, 2016
    Publication date: November 10, 2016
    Inventors: Chien-Fu Tang, Jiun-Hung Pan, Isaac Y. Chen
  • Publication number: 20160327969
    Abstract: A mixed mode compensation circuit for a power converter generate a digital signal according to a reference signal and a feedback signal which is related to the output voltage of the power converter, convert the digital signal into a first analog signal, offset the first analog signal with a variable offset value to generate a second analog signal, and filter out high-frequency components of the second analog signal to generate a third analog signal for stable output voltage of the power converter. The mixed mode compensation does not require large capacitors, and thus the circuit can be integrated into an integrated circuit.
    Type: Application
    Filed: July 3, 2016
    Publication date: November 10, 2016
    Inventors: Chien-Fu Tang, Jiun-Hung Pan, Isaac Y. Chen
  • Publication number: 20160327968
    Abstract: A mixed mode compensation circuit for a power converter generate a digital signal according to a reference signal and a feedback signal which is related to the output voltage of the power converter, convert the digital signal into a first analog signal, offset the first analog signal with a variable offset value to generate a second analog signal, and filter out high-frequency components of the second analog signal to generate a third analog signal for stable output voltage of the power converter. The mixed mode compensation does not require large capacitors, and thus the circuit can be integrated into an integrated circuit.
    Type: Application
    Filed: July 3, 2016
    Publication date: November 10, 2016
    Inventors: Chien-Fu Tang, Jiun-Hung Pan, Isaac Y. Chen
  • Patent number: 9479063
    Abstract: A frequency jittering control circuit for a PFM power supply includes a pulse frequency modulator to generate a frequency jittering control signal to switch a power switch to generate an output voltage. The frequency jittering control circuit jitters an input signal or an on-time or off-time of the pulse frequency modulator to jitter the switching frequency of the power switch to thereby improve EMI issue.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: October 25, 2016
    Assignee: RICHTEK TECHNOLOGY CORP.
    Inventors: Jiun-Hung Pan, Chien-Fu Tang, Isaac Y. Chen