Patents by Inventor Fwu-Iuan Hshieh

Fwu-Iuan Hshieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030107080
    Abstract: A trench MOSFET transistor device and a method of making the same.
    Type: Application
    Filed: November 20, 2001
    Publication date: June 12, 2003
    Inventors: Fwu-Iuan Hshieh, Koon Chong So, John E. Amato, Yan Man Tsui
  • Patent number: 6576952
    Abstract: In a first aspect of the invention, a modified semiconductor substrate is provided. The modified substrate comprises: (1) a semiconductor substrate; (2) at least one buffer layer provided over at least a portion of the substrate; and (3) a plurality of trenches comprising (a) a plurality of internal trenches that extend into the semiconductor substrate and (b) at least one shallow peripheral trench that extends into the at least one buffer layer but does not extend into the semiconductor substrate. In another aspect, a method of selectively providing trenches in a semiconductor substrate is provided. According to a further aspect of the invention, a trench DMOS transistor structure that includes at least one peripheral trench and a plurality of internal trenches is provided.
    Type: Grant
    Filed: January 17, 2002
    Date of Patent: June 10, 2003
    Assignee: General Semiconductor, Inc.
    Inventors: Fwu-Iuan Hshieh, Koon Chong So, Yan Man Tsui
  • Publication number: 20030096461
    Abstract: In integrated circuits produced by etching and damascene techniques, it is common for cracking to occur in dielectric material surrounding an interconnect metal layer integrated into the device, presumably as a result of the transfer of stresses from the interconnect metal layer to the surrounding dielectric material. The present invention addresses this problem by providing an interconnect metal layer that comprises rounded corners which are believed to reduce the stresses transferred to a surrounding dielectric layer.
    Type: Application
    Filed: November 21, 2001
    Publication date: May 22, 2003
    Inventors: Fwu-Iuan Hshieh, Koon Chong So, John E. Amato
  • Publication number: 20030094624
    Abstract: A trench MOSFET device and method of making the same.
    Type: Application
    Filed: November 21, 2001
    Publication date: May 22, 2003
    Inventors: Fwu-Iuan Hshieh, Koon Chong So, John E. Amato, Yan Man Tsui
  • Publication number: 20030096479
    Abstract: A method of forming a trench within a semiconductor substrate. The method comprises, for example, the following: (a) providing a semiconductor substrate; (b) providing a patterned first CVD-deposited masking material layer having a first aperture over the semiconductor substrate; (c) depositing a second CVD-deposited masking material layer over the first masking material layer; (d) etching the second masking material layer until a second aperture that is narrower than the first aperture is created in the second masking material within the first aperture; and (e) etching the semiconductor substrate through the second aperture such that a trench is formed in the semiconductor substrate. In preferred embodiments, the method of the present invention is used in the formation of trench MOSFET devices.
    Type: Application
    Filed: November 20, 2001
    Publication date: May 22, 2003
    Inventors: Fwu-Iuan Hshieh, Koon Chong So, John E. Amato, Brian D. Pratt
  • Publication number: 20030096480
    Abstract: A method is provided for forming shallow and deep dopant implants adjacent source regions of a first conductivity type within an upper portion of an epitaxial layer in a trench MOSFET device.
    Type: Application
    Filed: November 20, 2001
    Publication date: May 22, 2003
    Inventors: Fwu-Iuan Hshieh, Koon Chong So, John E. Amato, Brian D. Pratt
  • Publication number: 20030089946
    Abstract: A trench MOSFET device comprising: (a) a silicon substrate of a first conductivity type (preferably N-type conductivity); (b) a silicon epitaxial layer of the first conductivity type over the substrate, the epitaxial layer having a lower majority carrier concentration than the substrate; (c) a body region of a second conductivity type (preferably P-type conductivity) within an upper portion of the epitaxial layer; (d) a trench having trench sidewalls and a trench bottom, which extends into the epitaxial layer from an upper surface of the epitaxial layer and through the body region of the device; (f) an oxide region lining the trench, which comprises a lower segment covering at least the trench bottom and upper segments covering at least upper regions of the trench sidewalls; (g) a conductive region within the trench adjacent the oxide region; and (h) a source region of the first conductivity type within an upper portion of the body region and adjacent the trench.
    Type: Application
    Filed: November 15, 2001
    Publication date: May 15, 2003
    Inventors: Fwu-Iuan Hshieh, Koon Chong So
  • Patent number: 6558984
    Abstract: A trench Schottky barrier and a method of making the same in which the rectifier has a semiconductor region having first and second opposing faces; the semiconductor region having a drift region of a first conductivity type adjacent the first face and a cathode region of the first conductivity type adjacent the second face; the drift region having a lower net doping concentration than that of the cathode region. The rectifier also has a plurality of trenches extending into the semiconductor region from the first face; the trenches defining a plurality of mesas within the semiconductor region, and the trenches forming a plurality of trench intersections.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: May 6, 2003
    Assignee: General Semiconductor, Inc.
    Inventors: Fwu-Iuan Hshieh, Koon Chong So, John E. Amato
  • Publication number: 20030080351
    Abstract: A trench DMOS transistor device that comprises: (a) a substrate of a first conductivity type; (b) an epitaxial layer of first conductivity type over the substrate, wherein the epitaxial layer has a lower majority carrier concentration than the substrate; (c) a trench extending into the epitaxial layer from an upper surface of the epitaxial layer; (d) an insulating layer lining at least a portion of the trench; (e) a conductive region within the trench adjacent the insulating layer; (f) a body region of a second conductivity type provided within an upper portion of the epitaxial layer and adjacent the trench; (g) a source region of first conductivity type within an upper portion of the body region and adjacent the trench; and (h) one or more low resistivity deep regions extending into the device from an upper surface of the epitaxial layer. The low resistivity deep region acts to provide electrical contact with the substrate, which is a common drain region for the device.
    Type: Application
    Filed: October 30, 2001
    Publication date: May 1, 2003
    Inventors: Fwu-Iuan Hshieh, Koon Chong So, William John Nelson, John E. Amato
  • Patent number: 6555895
    Abstract: In a first aspect of the invention, a modified semiconductor substrate is provided. The modified substrate comprises: (1) a semiconductor substrate; (2) at least one buffer layer provided over at least a portion of the substrate; and (3) a plurality of trenches comprising (a) a plurality of internal trenches that extend into the semiconductor substrate and (b) at least one shallow peripheral trench that extends into the at least one buffer layer but does not extend into the semiconductor substrate. In another aspect, a method of selectively providing trenches in a semiconductor substrate is provided. According to a further aspect of the invention, a trench DMOS transistor structure that includes at least one peripheral trench and a plurality of internal trenches is provided.
    Type: Grant
    Filed: July 17, 2000
    Date of Patent: April 29, 2003
    Assignee: General Semiconductor, Inc.
    Inventors: Fwu-Iuan Hshieh, Koon Chong So, Yan Man Tsui
  • Patent number: 6548860
    Abstract: A trench DMOS transistor structure is provided that includes at least three individual trench DMOS transistor cells formed on a substrate of a first conductivity type. The plurality of individual DMOS transistor cells is dividable into peripheral transistor cells and interior transistor cells. Each of the individual transistor cells includes a body region located on the substrate, which has a second conductivity type. At least one trench extends through the body region and the substrate. An insulating layer lines the trench. A conductive electrode is located in the trench, which overlies the insulating layer. Interior transistor cells, but not the peripheral transistor cells, each further include a source region of the first conductivity type in the body region adjacent to the trench.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: April 15, 2003
    Assignee: General Semiconductor, Inc.
    Inventors: Fwu-Iuan Hshieh, Koon Chong So, Yan Man Tsui
  • Patent number: 6545315
    Abstract: A method of forming a trench DMOS transistor is provides which reduces punch-through. The method begins by providing a substrate of a first conductivity type. A body region, which has a second conductivity type, is formed on the substrate. A masking layer is formed which defines at least one trench. Next, the trench and an insulating layer that lines the trench are formed. A conductive electrode is then formed in the trench, which overlies the insulating layer. A source region of the first conductivity type is formed in the body region adjacent to the trench. The step of forming the trench includes the steps of etching the trench and smoothing the sidewalls of the trench with a sacrificial oxide layer before removal of the masking layer that defines the trench.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: April 8, 2003
    Assignee: General Semiconductor, Inc.
    Inventors: Fwu-Iuan Hshieh, Koon Chong So
  • Publication number: 20030040144
    Abstract: A merged device is that comprises a plurality of MOSFET cells and a plurality of Schottky rectifier cells, as well as a method of designing and making the same. According to an embodiment of the invention, the MOSFET cells comprise: (a) a source region of first conductivity type formed within an upper portion of a semiconductor region, (b) a body region of second conductivity type formed within a middle portion of the semiconductor region, (c) a drain region of first conductivity type formed within a lower portion of the semiconductor region, and (d) a gate region provided adjacent the source region, the body region, and the drain region. The Schottky diode cells in this embodiment are disposed within a trench network and comprise a conductor portion in Schottky rectifying contact with the lower portion of the semiconductor region. At least one MOSFET cell gate region is positioned along a sidewall of the trench network and adjacent at least one Schottky diode cell in this embodiment.
    Type: Application
    Filed: August 23, 2001
    Publication date: February 27, 2003
    Inventors: Richard A. Blanchard, Fwu-Iuan Hshieh, Koon Chong So
  • Patent number: 6518152
    Abstract: A Schottky rectifier is provided. The Schottky rectifier comprises: (a) a semiconductor region having first and second opposing faces, with the semiconductor region comprising a cathode region of first conductivity type adjacent the first face and a drift region of the first conductivity type adjacent the second face, and with the drift region having a lower net doping concentration than that of the cathode region; (b) one or more trenches extending from the second face into the semiconductor region and defining one or more mesas within the semiconductor region; (c) an insulating region adjacent the semiconductor region in lower portions of the trench; (d) and an anode electrode that is (i) adjacent to and forms a Schottky rectifying contact with the semiconductor at the second face, (ii) adjacent to and forms a Schottky rectifying contact with the semiconductor region within upper portions of the trench and (iii) adjacent to the insulating region within the lower portions of the trench.
    Type: Grant
    Filed: January 10, 2002
    Date of Patent: February 11, 2003
    Assignee: General Semiconductor, Inc.
    Inventors: Fwu-Iuan Hshieh, Max Chen, Koon Chong So, Yan Man Tsui
  • Patent number: 6518128
    Abstract: A trench MOSFET device and process for making the same are described. The trench MOSFET has a substrate of a first conductivity type, an epitaxial layer of the first conductivity type over the substrate, the epitaxial layer having a lower majority carrier concentration than the substrate, a plurality of trenches within the epitaxial layer, a first insulating layer, such as an oxide layer, lining the trenches, a conductive region, such as a polycrystalline silicon region, within the trenches adjacent to the first insulating layer, and one or more trench body regions and one or more termination body regions provided within an upper portion of the epitaxial layer, the termination body regions extending into the epitaxial layer to a greater depth than the trench body regions.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: February 11, 2003
    Assignee: General Semiconductor, Inc.
    Inventors: Fwu-Iuan Hshieh, Koon Chong So
  • Patent number: 6518127
    Abstract: A trench DMOS transistor cell is provided, which is formed on a substrate of a first conductivity type. A body region, which has a second conductivity type, is located on the substrate. At least one trench extends through the body region and the substrate. An insulating layer lines the trench. The insulating layer includes first and second portions that contact one another at an interface. The first portion of the insulating layer has a layer thickness greater than the second portion. The interface is located at a depth above a lower boundary of the body region. A conductive electrode is formed in the trench so that it overlies the insulating layer. A source region of the first conductivity type is formed in the body region adjacent to the trench.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: February 11, 2003
    Assignee: General Semiconductor, Inc.
    Inventors: Fwu-Iuan Hshieh, Koon Chong So, Yan Man Tsui
  • Patent number: 6518621
    Abstract: A method of forming a trench DMOS transistor is provides which reduces punch-through. The method begins by providing a substrate of a first conductivity type. A body region, which has a second conductivity type, is formed on the substrate. A masking layer is formed which defines at least one trench. Next, the trench and an insulating layer that lines the trench are formed. A conductive electrode is then formed in the trench, which overlies the insulating layer. A source region of the first conductivity type is formed in the body region adjacent to the trench. The step of forming the trench includes the steps of etching the trench and smoothing the sidewalls of the trench with a sacrificial oxide layer before removal of the masking layer that defines the trench.
    Type: Grant
    Filed: September 14, 1999
    Date of Patent: February 11, 2003
    Assignee: General Semiconductor, Inc.
    Inventors: Fwu-Iuan Hshieh, Koon Chong So
  • Publication number: 20020195655
    Abstract: A trench MOSFET transistor device and method of making the same are provided. The trench MOSFET transistor device comprises: (a) a drain region of first conductivity type; (b) a body region of a second conductivity type provided over the drain region, such that the drain region and the body region form a first junction; (c) a source region of the first conductivity type provided over the body region, such that the source region and the body region form a second junction; (d) source metal disposed on an upper surface of the source region; (e) a trench extending through the source region, through the body region and into the drain region; and (f) a gate region comprising (i) an insulating layer, which lines at least a portion of the trench and (ii) a conductive region, which is disposed within the trench adjacent the insulating layer. The body region in this device is separated from the source metal.
    Type: Application
    Filed: June 14, 2001
    Publication date: December 26, 2002
    Inventors: Fwu-Iuan Hshieh, Koon Chong So, Richard A. Blanchard
  • Publication number: 20020179993
    Abstract: A Schottky rectifier is provided. The Schottky rectifier comprises: (a) a semiconductor region having first and second opposing faces, with the semiconductor region comprising a cathode region of first conductivity type adjacent the first face and a drift region of the first conductivity type adjacent the second face, and with the drift region having a lower net doping concentration than that of the cathode region; (b) one or more trenches extending from the second face into the semiconductor region and defining one or more mesas within the semiconductor region; (c) an insulating region adjacent the semiconductor region in lower portions of the trench; (d) and an anode electrode that is (i) adjacent to and forms a Schottky rectifying contact with the semiconductor at the second face, (ii) adjacent to and forms a Schottky rectifying contact with the semiconductor region within upper portions of the trench and (iii) adjacent to the insulating region within the lower portions of the trench.
    Type: Application
    Filed: June 1, 2001
    Publication date: December 5, 2002
    Inventors: Fwu-Iuan Hshieh, Koon Chong So
  • Publication number: 20020175367
    Abstract: A trench DMOS transistor having overvoltage protection includes a substrate of a first conductivity type and a body region of a second conductivity type formed over the substrate. At least one trench extends through the body region and the substrate. An insulating layer lines the trench and overlies the body region. A conductive electrode is deposited in the trench so that it overlies the insulating layer. A source region of the first conductivity type is formed in the body region adjacent to the trench. An undoped polysilicon layer overlies a portion of the insulating layer. A plurality of cathode regions of the first conductivity type are formed in the undoped polysilicon layer. At least one anode region is in contact with adjacent ones of the plurality of cathode regions.
    Type: Application
    Filed: May 22, 2001
    Publication date: November 28, 2002
    Inventors: Fwu-Iuan Hshieh, Koon Chong So