Patents by Inventor Hyun-Jin Cho

Hyun-Jin Cho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9780185
    Abstract: A method of forming a gate structure for a semiconductor device that includes forming first spacers on the sidewalls of replacement gate structures that are present on a fin structure, wherein an upper surface of the first spacers is offset from an upper surface of the replacement gate structure, and forming at least second spacers on the first spacers and the exposed surfaces of the replacement gate structure. The method may further include substituting the replacement gate structure with a functional gate structure having a first width portion in a first space between adjacent first spacers, and a second width portion having a second width in a second space between adjacent second spacers, wherein the second width is greater than the first width.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: October 3, 2017
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC.
    Inventors: Hyun-Jin Cho, Tenko Yamashita, Hui Zang
  • Patent number: 9691971
    Abstract: Integrated circuits that include a magnetic tunnel junction (MTJ) for a magnetoresistive random-access memory (MRAM) and methods for fabricating such integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes forming a lower electrode on a metal interconnect. The metal interconnect is disposed above a semiconductor substrate and is aligned with a normal axis that is substantially perpendicular to the semiconductor substrate. The lower electrode includes a conductive metal plug. A MTJ stack is formed on the lower electrode aligned with the normal axis.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: June 27, 2017
    Assignee: GLOBALFOUNDRIES, INC.
    Inventors: Seowoo Nam, Ming He, Craig Child, Hyun-Jin Cho
  • Publication number: 20170152500
    Abstract: The present invention relates to a method of differentiating mesenchymal stem cells or adult stem cells into nerve cells by treating the mesenchymal stem cells or the adult stem cells with an electromagnetic field having a high intensity of 100 to 1,500 mT and a low frequency of 0.01 to 100 Hz. The present invention also relates to a medical device to which the method is applied. The method of differentiating nerve cells by using a magnetic field, and a composition according to the present invention induce the differentiation of adult stem cells into nerve cells by using a low-frequency, high-intensity electromagnetic field, so that nerve cells or neural stem cells can easily be differentiated through only electromagnetic field treatment in a short time.
    Type: Application
    Filed: April 2, 2015
    Publication date: June 1, 2017
    Applicant: DONGGUK UNIVERSITY INDUSTRY-ACADEMIC COOPERATION FOUNDATION
    Inventors: Young Kwon SEO, Jung Keug PARK, Hee Hun YOON, Hyun Jin CHO, Hee Jung PARK, Yu Mi KIM, Bo-Young YOO, Sang Eun CHO, Sang Heon KIM
  • Patent number: 9666791
    Abstract: A method of forming a self-aligned MTJ without using a photolithography mask and the resulting device are provided. Embodiments include forming a first electrode over a metal layer, the metal layer recessed in a low-k dielectric layer; forming a MTJ layer over the first electrode; forming a second electrode over the MTJ layer; removing portions of the second electrode, the MTJ layer, and the first electrode down to the low-k dielectric layer; forming a silicon nitride-based layer over the second electrode and the low-k dielectric layer; and planarizing the silicon nitride-based layer down to the second electrode.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: May 30, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Xunyuan Zhang, Ruilong Xie, Xiuyu Cai, Seowoo Nam, Hyun-Jin Cho
  • Patent number: 9646969
    Abstract: A method of forming a gate structure for a semiconductor device that includes forming first spacers on the sidewalls of replacement gate structures that are present on a fin structure, wherein an upper surface of the first spacers is offset from an upper surface of the replacement gate structure, and forming at least second spacers on the first spacers and the exposed surfaces of the replacement gate structure. The method may further include substituting the replacement gate structure with a functional gate structure having a first width portion in a first space between adjacent first spacers, and a second width portion having a second width in a second space between adjacent second spacers, wherein the second width is greater than the first width.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: May 9, 2017
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC.
    Inventors: Hyun-Jin Cho, Tenko Yamashita, Hui Zang
  • Patent number: 9620361
    Abstract: An apparatus for crystallizing an active layer of a thin film transistor, the apparatus includes a first laser irradiating a first beam toward a substrate, an amorphous layer on the substrate being crystallizable into the active layer of the thin film transistor by the first beam, and a second laser irradiating a second beam toward the substrate to heat the active layer, the second beam having an asymmetric intensity profile in a scanning direction of the first and second beams.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: April 11, 2017
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Byoung-Kwon Choo, Sang-Hoon Ahn, Byoung-Ho Cheong, Joo-Woan Cho, Hyun-Jin Cho, Soo-Yeon Han
  • Patent number: 9613958
    Abstract: A method of forming a gate structure for a semiconductor device that includes forming first spacers on the sidewalls of replacement gate structures that are present on a fin structure, wherein an upper surface of the first spacers is offset from an upper surface of the replacement gate structure, and forming at least second spacers on the first spacers and the exposed surfaces of the replacement gate structure. The method may further include substituting the replacement gate structure with a functional gate structure having a first width portion in a first space between adjacent first spacers, and a second width portion having a second width in a second space between adjacent second spacers, wherein the second width is greater than the first width.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: April 4, 2017
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES, INC.
    Inventors: Hyun-Jin Cho, Tenko Yamashita, Hui Zang
  • Publication number: 20170077259
    Abstract: A method of forming a gate structure for a semiconductor device that includes forming first spacers on the sidewalls of replacement gate structures that are present on a fin structure, wherein an upper surface of the first spacers is offset from an upper surface of the replacement gate structure, and forming at least second spacers on the first spacers and the exposed surfaces of the replacement gate structure. The method may further include substituting the replacement gate structure with a functional gate structure having a first width portion in a first space between adjacent first spacers, and a second width portion having a second width in a second space between adjacent second spacers, wherein the second width is greater than the first width.
    Type: Application
    Filed: November 29, 2016
    Publication date: March 16, 2017
    Inventors: Hyun-Jin Cho, Tenko Yamashita, Hui Zang
  • Publication number: 20170077099
    Abstract: A method of forming a gate structure for a semiconductor device that includes forming first spacers on the sidewalls of replacement gate structures that are present on a fin structure, wherein an upper surface of the first spacers is offset from an upper surface of the replacement gate structure, and forming at least second spacers on the first spacers and the exposed surfaces of the replacement gate structure. The method may further include substituting the replacement gate structure with a functional gate structure having a first width portion in a first space between adjacent first spacers, and a second width portion having a second width in a second space between adjacent second spacers, wherein the second width is greater than the first width.
    Type: Application
    Filed: November 3, 2016
    Publication date: March 16, 2017
    Inventors: Hyun-Jin Cho, Tenko Yamashita, Hui Zang
  • Patent number: 9564440
    Abstract: A method of forming a gate structure for a semiconductor device that includes forming first spacers on the sidewalls of replacement gate structures that are present on a fin structure, wherein an upper surface of the first spacers is offset from an upper surface of the replacement gate structure, and forming at least second spacers on the first spacers and the exposed surfaces of the replacement gate structure. The method may further include substituting the replacement gate structure with a functional gate structure having a first width portion in a first space between adjacent first spacers, and a second width portion having a second width in a second space between adjacent second spacers, wherein the second width is greater than the first width.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: February 7, 2017
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC.
    Inventors: Hyun-Jin Cho, Tenko Yamashita, Hui Zang
  • Publication number: 20160365450
    Abstract: A method of forming a gate structure for a semiconductor device that includes forming first spacers on the sidewalls of replacement gate structures that are present on a fin structure, wherein an upper surface of the first spacers is offset from an upper surface of the replacement gate structure, and forming at least second spacers on the first spacers and the exposed surfaces of the replacement gate structure. The method may further include substituting the replacement gate structure with a functional gate structure having a first width portion in a first space between adjacent first spacers, and a second width portion having a second width in a second space between adjacent second spacers, wherein the second width is greater than the first width.
    Type: Application
    Filed: July 12, 2016
    Publication date: December 15, 2016
    Inventors: Hyun-Jin Cho, Tenko Yamashita, Hui Zang
  • Publication number: 20160365346
    Abstract: A method of forming a gate structure for a semiconductor device that includes forming first spacers on the sidewalls of replacement gate structures that are present on a fin structure, wherein an upper surface of the first spacers is offset from an upper surface of the replacement gate structure, and forming at least second spacers on the first spacers and the exposed surfaces of the replacement gate structure. The method may further include substituting the replacement gate structure with a functional gate structure having a first width portion in a first space between adjacent first spacers, and a second width portion having a second width in a second space between adjacent second spacers, wherein the second width is greater than the first width.
    Type: Application
    Filed: June 10, 2015
    Publication date: December 15, 2016
    Inventors: Hyun-Jin Cho, Tenko Yamashita, Hui Zang
  • Publication number: 20160365290
    Abstract: A method of forming a gate structure for a semiconductor device that includes forming first spacers on the sidewalls of replacement gate structures that are present on a fin structure, wherein an upper surface of the first spacers is offset from an upper surface of the replacement gate structure, and forming at least second spacers on the first spacers and the exposed surfaces of the replacement gate structure. The method may further include substituting the replacement gate structure with a functional gate structure having a first width portion in a first space between adjacent first spacers, and a second width portion having a second width in a second space between adjacent second spacers, wherein the second width is greater than the first width.
    Type: Application
    Filed: August 9, 2016
    Publication date: December 15, 2016
    Inventors: Hyun-Jin Cho, Tenko Yamashita, Hui Zang
  • Publication number: 20160365348
    Abstract: A method of forming a gate structure for a semiconductor device that includes forming first spacers on the sidewalls of replacement gate structures that are present on a fin structure, wherein an upper surface of the first spacers is offset from an upper surface of the replacement gate structure, and forming at least second spacers on the first spacers and the exposed surfaces of the replacement gate structure. The method may further include substituting the replacement gate structure with a functional gate structure having a first width portion in a first space between adjacent first spacers, and a second width portion having a second width in a second space between adjacent second spacers, wherein the second width is greater than the first width.
    Type: Application
    Filed: August 9, 2016
    Publication date: December 15, 2016
    Inventors: Hyun-Jin Cho, Tenko Yamashita, Hui Zang
  • Patent number: 9466491
    Abstract: One illustrative method disclosed herein includes, among other things, forming a sacrificial gate structure above a semiconductor substrate, forming a sidewall spacer adjacent opposite sides of the sacrificial gate structure, removing the sacrificial gate structure and forming a replacement gate structure in its place, at some point after forming the replacement gate structure, performing an etching process to reduce the height of the spacers so as to thereby define recessed spacers having an upper surface that partially defines a spacer recess, and forming a spacer etch block cap on the upper surface of each recessed spacer structure and within the spacer recess.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: October 11, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Daniel T. Pham, Hyun-Jin Cho, Ruilong Xie
  • Patent number: 9443775
    Abstract: Disclosed is a novel system and method to form local interconnects in a continuity test structure. The method begins with a first set of transistor gate lines and a second set of transistor gate lines are formed. Next, a first group of two or more local interconnect lines landing on transistor gates and formed substantially perpendicular to the first set of transistor gate lines and electrically coupled therewith is formed using a first lithography pass. A second group of two or more local interconnect lines landing and formed substantially perpendicular to the second set of transistor gate lines and electrically coupled therewith is formed during second lithography pass. For some technologies, a third set of transistor gate lines is formed along with a third group using a third lithography pass.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: September 13, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Hyun-Jin Cho, Tenko Yamashita, Chun-chen Yeh, Hui Zang
  • Patent number: 9417372
    Abstract: A lighting unit for a display device includes: a plurality of light sources which emits light; a wedge-shaped light guide having an incident surface disposed close to the light sources and an opposing surface disposed opposite the incident surface; and a lens sheet disposed on the light guide, where the lens sheet includes a plurality of lenses, each having an axis in a direction from the incident surface to the opposing surface, where the light guide is thinner at the incident surface than at the opposing surface, and a radius of curvature of each of the lenses is larger at the incident surface than the opposing surface.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: August 16, 2016
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Hyun Deok Im, Hyun Jin Cho, Oleg Prudnikov, Dae Ho Yoon, Byoung Ho Cheong
  • Publication number: 20160190207
    Abstract: Integrated circuits that include a magnetic tunnel junction (MTJ) for a magnetoresistive random-access memory (MRAM) and methods for fabricating such integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes forming a lower electrode on a metal interconnect. The metal interconnect is disposed above a semiconductor substrate and is aligned with a normal axis that is substantially perpendicular to the semiconductor substrate. The lower electrode includes a conductive metal plug. A MTJ stack is formed on the lower electrode aligned with the normal axis.
    Type: Application
    Filed: June 24, 2015
    Publication date: June 30, 2016
    Inventors: Seowoo Nam, Ming He, Craig Child, Hyun-Jin Cho
  • Publication number: 20160141489
    Abstract: A method of forming a self-aligned MTJ without using a photolithography mask and the resulting device are provided. Embodiments include forming a first electrode over a metal layer, the metal layer recessed in a low-k dielectric layer; forming a MTJ layer over the first electrode; forming a second electrode over the MTJ layer; removing portions of the second electrode, the MTJ layer, and the first electrode down to the low-k dielectric layer; forming a silicon nitride-based layer over the second electrode and the low-k dielectric layer; and planarizing the silicon nitride-based layer down to the second electrode.
    Type: Application
    Filed: September 1, 2015
    Publication date: May 19, 2016
    Inventors: Xunyuan ZHANG, Ruilong XIE, Xiuyu CAI, Seowoo NAM, Hyun-Jin CHO
  • Patent number: 9269712
    Abstract: A method for making a semiconductor device may include forming a first semiconductor layer on a substrate comprising a first semiconductor material, forming a second semiconductor layer on the first semiconductor layer comprising a second semiconductor material, and forming mask regions on the second semiconductor layer and etching through the first and second semiconductor layers to define a plurality of spaced apart pillars on the substrate. The method may further include forming an oxide layer laterally surrounding the pillars and mask regions, and removing the mask regions and forming inner spacers on laterally adjacent corresponding oxide layer portions atop each pillar. The method may additionally include etching through the second semiconductor layer between respective inner spacers to define a pair of semiconductor fins of the second semiconductor material from each pillar, and removing the inner spacers and forming an oxide beneath each semiconductor fin.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: February 23, 2016
    Assignees: STMICROELECTRONICS, INC., GLOBALFOUNDRIES INC
    Inventors: Qing Liu, Ruilong Xie, Hyun-Jin Cho