Patents by Inventor Jagar Singh

Jagar Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230061717
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a lateral bipolar transistor and methods of manufacture. The structure includes: an extrinsic base region within a semiconductor substrate material; a shallow trench isolation structure extending into the semiconductor substrate material and bounding the extrinsic base region; an emitter region adjacent to the shallow trench isolation structure and on a side of the extrinsic base region; and a collector region adjacent to the shallow trench isolation structure and on an opposing side of the extrinsic base region.
    Type: Application
    Filed: November 23, 2021
    Publication date: March 2, 2023
    Inventors: Jagar Singh, Randy L. Wolf
  • Publication number: 20230063301
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to annular bipolar transistors and methods of manufacture.
    Type: Application
    Filed: December 21, 2021
    Publication date: March 2, 2023
    Inventors: Alexander M. Derrickson, Arkadiusz Malinowski, Jagar Singh, Mankyu Yang, Judson R. Holt
  • Publication number: 20230063900
    Abstract: Structures for a bipolar junction transistor and methods of forming a structure for a bipolar junction transistor. The structure includes a collector having a raised portion, an emitter having a raised portion, and a base laterally arranged between the raised portion of the emitter and the raised portion of the collector. The base includes an intrinsic base layer and an extrinsic base layer stacked with the intrinsic base layer. The structure further includes a stress liner positioned to overlap with the raised portion of the collector, the raised portion of the emitter, and the extrinsic base layer.
    Type: Application
    Filed: November 11, 2021
    Publication date: March 2, 2023
    Inventors: Man Gu, Jagar Singh, Haiting Wang, Jeffrey Johnson
  • Publication number: 20230062747
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a lateral bipolar transistor and methods of manufacture. The structure includes a lateral bipolar junction transistor including an extrinsic base region and a bilayer dielectric spacer on sidewalls of the extrinsic base region, and a p-n junction positioned under the bilayer dielectric spacer between the extrinsic base region and at least an emitter region.
    Type: Application
    Filed: November 17, 2021
    Publication date: March 2, 2023
    Inventors: Man Gu, Haiting Wang, Jagar Singh
  • Publication number: 20230061219
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a lateral bipolar transistor and methods of manufacture. A structure includes: an intrinsic base comprising semiconductor material in a channel region of a semiconductor substrate; an extrinsic base vertically above the intrinsic base; a raised collector region on the semiconductor substrate and laterally connected to the intrinsic base; and a raised emitter region on the semiconductor substate and laterally connected to the intrinsic base.
    Type: Application
    Filed: October 25, 2021
    Publication date: March 2, 2023
    Inventors: Haiting Wang, Alexander Derrickson, Jagar Singh, Vibhor Jain, Andreas Knorr, Alexander Martin, Judson R. Holt, Zhenyu Hu
  • Publication number: 20230067486
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a lateral bipolar transistor with gated collector and methods of manufacture. The structure includes: an extrinsic base region vertically over a semiconductor substrate and comprising asymmetrical sidewall spacers on opposing sidewalls of the extrinsic base region; a collector region on the semiconductor substrate and separated from the extrinsic base region by at least a first spacer of the asymmetrical sidewall spacers; and an emitter region on the semiconductor substrate and separated from the extrinsic base region by a second spacer of the asymmetrical sidewall spacers.
    Type: Application
    Filed: November 12, 2021
    Publication date: March 2, 2023
    Inventors: Alexander Derrickson, Vibhor Jain, Judson R. Holt, Jagar Singh, Mankyu Yang
  • Publication number: 20230061482
    Abstract: The disclosure provides a lateral bipolar transistor structure with a base layer over a semiconductor buffer, and related methods. A lateral bipolar transistor structure may include an emitter/collector (E/C) layer over an insulator. The E/C layer has a first doping type. A semiconductor buffer is adjacent the insulator. A base layer is on the semiconductor buffer and adjacent the E/C layer, the base layer including a lower surface below the E/C layer and an upper surface above the E/C layer. The base layer has a second doping type opposite the first doping type.
    Type: Application
    Filed: November 17, 2021
    Publication date: March 2, 2023
    Inventors: Hong Yu, Jagar Singh, Zhenyu Hu, John J. Pekarik
  • Patent number: 11588044
    Abstract: Embodiments of the disclosure provide a bipolar junction transistor (BJT) structure and related method. A BJT according to the disclosure may include a base over a semiconductor substrate. A collector is over the semiconductor substrate and laterally abuts a first horizontal end of the base. An emitter is over the semiconductor substrate and laterally abuts a second horizontal end of the base opposite the first horizontal end. A horizontal interface between the emitter and the base is smaller than a horizontal interface between the collector and the base.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: February 21, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Alexander M. Derrickson, Mankyu Yang, Richard F. Taylor, III, Jagar Singh, Alexander L. Martin
  • Patent number: 11588056
    Abstract: A structure includes a semiconductor-on-insulator (SOI) substrate including a semiconductor substrate, a buried insulator layer over the semiconductor substrate, and an SOI layer over the buried insulator layer. At least one polycrystalline active region fill shape is in the SOI layer. A polycrystalline isolation region may be in the semiconductor substrate under the buried insulator layer. The at least one polycrystalline active region fill shape is laterally aligned over the polycrystalline isolation region, where provided. Where provided, the polycrystalline isolation region may extend to different depths in the semiconductor substrate.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: February 21, 2023
    Assignee: GLOBALFOUNDRIES U.S. Inc.
    Inventors: Mark D. Levy, Siva P. Adusumilli, Jagar Singh
  • Patent number: 11575029
    Abstract: Disclosed is a semiconductor structure including at least one bipolar junction transistor (BJT), which is uniquely configured so that fabrication of the BJT can be readily integrated with fabrication of complementary metal oxide semiconductor (CMOS) devices on an advanced silicon-on-insulator (SOI) wafer. The BJT has an emitter, a base, and a collector laid out horizontally across an insulator layer and physically separated. Extension regions extend laterally between the emitter and the base and between the base and the collector and are doped to provide junctions between the emitter and the base and between the base and the collector. Gate structures are on the extension regions. The emitter, base, and collector are contacted. Optionally, the gate structures and a substrate below the insulator layer are contacted and can be biased to optimize BJT performance. Optionally, the structure further includes one or more CMOS devices. Also disclosed is a method of forming the structure.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: February 7, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Alexander M. Derrickson, Richard F. Taylor, III, Mankyu Yang, Alexander L. Martin, Judson R. Holt, Jagar Singh
  • Publication number: 20230032080
    Abstract: Disclosed is a semiconductor structure that includes an asymmetric lateral bipolar junction transistor (BJT). The BJT includes an emitter, a base, a collector extension and a collector arranged side-by-side (i.e., laterally) across a semiconductor layer. The emitter, collector and collector extension have a first type conductivity with the collector extension having a lower conductivity level than either the emitter or the collector. The base has a second type conductivity that is different from the first type conductivity. With such a lateral configuration, the BJT can be easily integrated with CMOS devices on advanced SOI technology platforms. With such an asymmetric configuration and, particularly, given the inclusion of the collector extension but not an emitter extension, the BJT can achieve a relatively high collector-emitter breakdown voltage (Vbr-CEO) without a significant risk of leakage currents at high voltages. Also disclosed are method embodiments for forming such a semiconductor structure.
    Type: Application
    Filed: July 29, 2021
    Publication date: February 2, 2023
    Applicant: GLOBALFOUNDRIES U.S. Inc.
    Inventors: Alexander M. Derrickson, Mankyu Yang, Judson R. Holt, Jagar Singh, Alexander L. Martin, Richard F. Taylor, III
  • Publication number: 20220376093
    Abstract: Disclosed is a semiconductor structure including at least one bipolar junction transistor (BJT), which is uniquely configured so that fabrication of the BJT can be readily integrated with fabrication of complementary metal oxide semiconductor (CMOS) devices on an advanced silicon-on-insulator (SOI) wafer. The BJT has an emitter, a base, and a collector laid out horizontally across an insulator layer and physically separated. Extension regions extend laterally between the emitter and the base and between the base and the collector and are doped to provide junctions between the emitter and the base and between the base and the collector. Gate structures are on the extension regions. The emitter, base, and collector are contacted. Optionally, the gate structures and a substrate below the insulator layer are contacted and can be biased to optimize BJT performance. Optionally, the structure further includes one or more CMOS devices. Also disclosed is a method of forming the structure.
    Type: Application
    Filed: May 19, 2021
    Publication date: November 24, 2022
    Applicant: GLOBALFOUNDRIES U.S. Inc.
    Inventors: Alexander M. Derrickson, Richard F. Taylor, III, Mankyu Yang, Alexander L. Martin, Judson R. Holt, Jagar Singh
  • Patent number: 11508810
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to high voltage diode structures and methods of manufacture. The structure includes: a diode structure composed of first well of a first dopant type in a substrate; and a well ring structure of the first dopant type in the substrate which completely surrounds the first well of the first dopant type, and spaced a distance “x” from the first well to cut a leakage path to a shallower second well of a second dopant type.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: November 22, 2022
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Jagar Singh, Shiv Kumar Mishra
  • Patent number: 11462648
    Abstract: One illustrative Schottky diode disclosed herein includes a semiconductor substrate, an anode region and a cathode region. The anode region includes a plurality of first fins with a first vertical height formed in the anode region, wherein an upper surface of the semiconductor substrate is exposed within the anode region. The cathode region includes a plurality of second fins with a second vertical height that is greater than the first vertical height. The device also includes a conductive structure that contacts and engages at least an upper surface of the plurality of first fins in the anode region.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: October 4, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Jagar Singh, Srikanth Balaji Samavedam
  • Patent number: 11456384
    Abstract: A structure includes a semiconductor fin; a first source/drain region and a second source/drain region in the semiconductor fin; a first doping region about the first source/drain region, defining a channel region in the semiconductor fin; and a second doping region about the second source/drain region, defining a drain extension in the semiconductor fin. A gate structure is over the channel region and the drain extension. The gate structure includes a gate dielectric layer, a first metal layer adjacent a second metal layer over the gate dielectric layer, and a contiguous gate conductor over the first metal layer and the second metal layer. One of the metal layers is over the channel region and the other is over the drain extension. The metal layers may have different thicknesses and/or work functions, to improve transconductance and RF performance of an LDMOS FinFET including the structure.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: September 27, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Jagar Singh, Sudarshan Narayanan, Wang Zheng
  • Patent number: 11387353
    Abstract: A structure includes a first source/drain region and a second source/drain region in a semiconductor body; and a trench isolation between the first and second source/drain regions in the semiconductor body. A first doping region is about the first source/drain region, a second doping region about the second source/drain region, and the trench isolation is within the second doping region. A third doping region is adjacent to the first doping region and extend partially into the second doping region to create a charge trap section. A gate conductor of a gate structure is over the trench isolation and the first, second, and third doping regions. The charge trap section creates a charge controlled e-fuse operable by applying a stress voltage to the gate conductor.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: July 12, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Jagar Singh, Sudarshan Narayanan, Alvin J. Joseph, William J. Taylor, Jr., Jeffrey B. Johnson
  • Publication number: 20220173230
    Abstract: Embodiments of the disclosure provide a bipolar junction transistor (BJT) structure and related method. A BJT according to the disclosure may include a base over a semiconductor substrate. A collector is over the semiconductor substrate and laterally abuts a first horizontal end of the base. An emitter is over the semiconductor substrate and laterally abuts a second horizontal end of the base opposite the first horizontal end. A horizontal interface between the emitter and the base is smaller than a horizontal interface between the collector and the base.
    Type: Application
    Filed: December 2, 2020
    Publication date: June 2, 2022
    Inventors: Alexander M. Derrickson, Mankyu Yang, Richard F. Taylor, III, Jagar Singh, Alexander L. Martin
  • Patent number: 11276770
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to gate controlled transistors and methods of manufacture. The structure includes: an emitter region; a collector region; base regions on opposing sides of the emitter region and the collector region; and a gate structure composed of a body region and leg regions, the body region being located between the base regions on opposing sides of the emitter region and the collector region, and the leg regions isolating the base regions from both the emitter region and the collector region.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: March 15, 2022
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Mankyu Yang, Jagar Singh, Alexander Martin, John J. Ellis-Monaghan
  • Publication number: 20220052205
    Abstract: A structure includes a semiconductor-on-insulator (SOI) substrate including a semiconductor substrate, a buried insulator layer over the semiconductor substrate, and an SOI layer over the buried insulator layer. At least one polycrystalline active region fill shape is in the SOI layer. A polycrystalline isolation region may be in the semiconductor substrate under the buried insulator layer. The at least one polycrystalline active region fill shape is laterally aligned over the polycrystalline isolation region, where provided. Where provided, the polycrystalline isolation region may extend to different depths in the semiconductor substrate.
    Type: Application
    Filed: August 13, 2020
    Publication date: February 17, 2022
    Inventors: Mark D. Levy, Siva P. Adusumilli, Jagar Singh
  • Publication number: 20220005952
    Abstract: A structure includes a semiconductor fin; a first source/drain region and a second source/drain region in the semiconductor fin; a first doping region about the first source/drain region, defining a channel region in the semiconductor fin; and a second doping region about the second source/drain region, defining a drain extension in the semiconductor fin. A gate structure is over the channel region and the drain extension. The gate structure includes a gate dielectric layer, a first metal layer adjacent a second metal layer over the gate dielectric layer, and a contiguous gate conductor over the first metal layer and the second metal layer. One of the metal layers is over the channel region and the other is over the drain extension. The metal layers may have different thicknesses and/or work functions, to improve transconductance and RF performance of an LDMOS FinFET including the structure.
    Type: Application
    Filed: July 6, 2020
    Publication date: January 6, 2022
    Inventors: Jagar Singh, Sudarshan Narayanan, Wang Zheng