Patents by Inventor Jagar Singh

Jagar Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190326413
    Abstract: Methods, apparatus, and systems for forming a semiconductor substrate comprising a well region containing a first impurity; forming a gate on the semiconductor substrate above the well region; implanting a second impurity, of a type opposite the first impurity, in the well region on each side of the gate and to a depth above a bottom of the well region, to form two second impurity regions each having a first concentration; removing an upper portion of each second impurity region, to yield two source/drain (S/D) cavities above two depletion regions; and growing epitaxially a doped S/D region in each S/D cavity, wherein each S/D region comprises the second impurity having a second concentration greater than the first concentration.
    Type: Application
    Filed: April 24, 2018
    Publication date: October 24, 2019
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Arkadiusz Malinowski, Jagar Singh
  • Patent number: 10453605
    Abstract: A first layer on a substrate includes an insulator material portion adjacent an energy-reactive material portion. The energy-reactive material portion evaporates upon application of energy during manufacturing. Processing patterns the first layer to include recesses extending to the substrate in at least the energy-reactive material portion. The recesses are filled with a conductor material, and a porous material layer is formed on the first layer and on the conductor material. Energy is applied to the porous material layer to: cause the energy to pass through the porous material layer and reach the energy-reactive material portion; cause the energy-reactive material portion to evaporate; and fully remove the energy-reactive material portion from an area between the substrate and the porous material layer, and this leaves a void between the substrate and the porous material layer and adjacent to the conductor material.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: October 22, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Sunil K. Singh, Jagar Singh
  • Publication number: 20190312109
    Abstract: Device structures for a field-effect transistor and methods of forming a device structure for a field-effect transistor. A channel region is formed that includes first and second semiconductor layers, and a gate structure is formed that is arranged over the first and second semiconductor layers. First and second source/drain regions are formed in which the second source/drain region is separated from the first source/drain region by the channel region. The first semiconductor layer is composed of a semiconductor material having a first carrier mobility, and the second semiconductor layer is composed of a semiconductor material having a second carrier mobility that is greater than the first carrier mobility of the first semiconductor layer.
    Type: Application
    Filed: April 5, 2018
    Publication date: October 10, 2019
    Inventors: Heimanu Niebojewski, Jagar Singh
  • Publication number: 20190245080
    Abstract: An LDFET may be formed on the basis of manufacturing platforms designed for forming sophisticated small signal transistor elements. To this end, sidewall areas of trench isolation regions laterally positioned within the drift region may be used as current paths, thereby achieving increased design flexibility, since efficient current paths may still be established, even if the trench isolation regions have to extend into the substrate material due to design criteria determined by the sophisticated small signal transistor elements. In some illustrative embodiments, isolation of P-LDFETs with respect to the P-substrate may be accomplished without requiring a deep well implantation.
    Type: Application
    Filed: February 5, 2018
    Publication date: August 8, 2019
    Inventor: Jagar Singh
  • Patent number: 10332834
    Abstract: Semiconductor fuses with nanowire fuse links and fabrication methods thereof are presented. The methods include, for instance: fabricating a semiconductor fuse, the semiconductor fuse including at least one nanowire fuse link, and the fabricating including: forming at least one nanowire, the at least one nanowire including a semiconductor material; and reacting the at least one nanowire with a metal to form the at least one nanowire fuse link of the semiconductor fuse, the at least one nanowire fuse link including a semiconductor-metal alloy. In another aspect, a structure is presented. The structure includes: a semiconductor fuse, the semiconductor fuse including: at least one nanowire fuse link, the at least one nanowire fuse link including a semiconductor-metal alloy.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: June 25, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Chun Yu Wong, Jagar Singh, Ashish Baraskar, Min-hwa Chi
  • Patent number: 10290712
    Abstract: Field-effect transistor structures for a laterally-diffused metal-oxide-semiconductor (LDMOS) device and methods of forming a LDMOS device. First and second fins are formed that extend vertically from a top surface of a substrate. A body region is arranged partially in the substrate and partially in the first fin. A drain region is arranged partially in the substrate, partially in the first fin, and partially in the second fin. The body and drain regions respectively have opposite first and second conductivity types. A source region of the second conductivity type is located within the first well in the first fin, and a gate structure is arranged to overlap with a portion of the first fin. The first fin is separated from the second fin by a cut extending vertically to the top surface of the substrate. An isolation region is arranged in the cut between the first fin and the second fin.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: May 14, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jerome Ciavatti, Jagar Singh, Hui Zang
  • Patent number: 10290698
    Abstract: An illustrative method includes, among other things, forming a plurality of fins. A subset of the plurality of fins is selectively removed, leaving at least a first fin to define a first fin portion and at least a second fin to define a second fin portion. A first type of dopant is implanted into a substrate to define a resistor body and the first type of dopant is implanted into the first and second fins. The first fin portion is disposed above a first end of the resistor body and the second fin is disposed above a second end of the resistor body. An insulating layer is formed above the resistor body. At least one gate structure is formed above the insulating layer and above the resistor body.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: May 14, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Jagar Singh
  • Publication number: 20190139892
    Abstract: One illustrative method disclosed herein comprises forming a vertically oriented semiconductor (VOS) structure in a semiconductor substrate and performing a metal silicide formation process to convert at least a portion of the VOS structure into a metal silicide material, thereby forming a conductive silicide vertically oriented e-fuse.
    Type: Application
    Filed: November 7, 2017
    Publication date: May 9, 2019
    Inventors: Chun Yu Wong, Kwan-Yong Lim, Seong Yeol Mun, Jagar Singh, Hui Zang
  • Publication number: 20190131406
    Abstract: Field-effect transistor structures for a laterally-diffused metal-oxide-semiconductor (LDMOS) device and methods of forming a LDMOS device. First and second fins are formed that extend vertically from a top surface of a substrate. A body region is arranged partially in the substrate and partially in the first fin. A drain region is arranged partially in the substrate, partially in the first fin, and partially in the second fin. The body and drain regions respectively have opposite first and second conductivity types. A source region of the second conductivity type is located within the first well in the first fin, and a gate structure is arranged to overlap with a portion of the first fin. The first fin is separated from the second fin by a cut extending vertically to the top surface of the substrate. An isolation region is arranged in the cut between the first fin and the second fin.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 2, 2019
    Inventors: Jerome Ciavatti, Jagar Singh, Hui Zang
  • Patent number: 10276700
    Abstract: A symmetrical lateral bipolar junction transistor (SLBJT) is provided. The SLBJT includes a p-type semiconductor substrate, a n-type well, an emitter of a SLBJT situated in the n-type well, a base of the SLBJT situated in the n-type well and spaced from the emitter by a distance on one side of the base, a collector of the SLBJT situated in the n-type well and spaced from the base by the distance on an opposite side of the base, and an electrical connection to the substrate outside the n-type well. The SLBJT is used to characterize a transistor in a circuit by electrically coupling the SLBJT to a gate of the test transistor, applying a voltage to the gate, and characterizing aspect(s) of the test transistor under the applied voltage. The SLBJT protects the gate against damage to the gate dielectric.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: April 30, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Biswanath Senapati, Jagar Singh
  • Publication number: 20190108942
    Abstract: A first layer on a substrate includes an insulator material portion adjacent an energy-reactive material portion. The energy-reactive material portion evaporates upon application of energy during manufacturing. Processing patterns the first layer to include recesses extending to the substrate in at least the energy-reactive material portion. The recesses are filled with a conductor material, and a porous material layer is formed on the first layer and on the conductor material. Energy is applied to the porous material layer to: cause the energy to pass through the porous material layer and reach the energy-reactive material portion; cause the energy-reactive material portion to evaporate; and fully remove the energy-reactive material portion from an area between the substrate and the porous material layer, and this leaves a void between the substrate and the porous material layer and adjacent to the conductor material.
    Type: Application
    Filed: October 11, 2017
    Publication date: April 11, 2019
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Sunil K. Singh, Jagar Singh
  • Publication number: 20190088766
    Abstract: One illustrative method disclosed herein includes, among other things, forming a sacrificial sidewall spacer adjacent a sidewall spacer of a transistor and, with the sacrificial sidewall spacer in position, forming openings in an active layer of an SOI substrate adjacent the sacrificial sidewall spacer so as to thereby expose portions of a buried insulation layer of the SOI substrate. In this example, the method also includes performing an isotropic etching process to form recesses of any shape in the buried insulation layer, wherein the recesses extend laterally under a portion of the active layer, and forming an epi semiconductor material in at least the recesses in the buried insulation layer.
    Type: Application
    Filed: September 21, 2017
    Publication date: March 21, 2019
    Inventors: Shesh Mani Pandey, Jagar Singh, Judson R. Holt
  • Publication number: 20190088557
    Abstract: The disclosure is directed to integrated circuit (IC) structures, and more particularly, to IC structures including a deep n-well that is self-aligned with a shallow trench isolation (STI). The integrated circuit structure may include: a first pair of isolation regions within a substrate; a first region of the substrate between the first pair of isolation regions having a first conductivity type; a second region of the substrate beneath the first pair of isolation regions and the first region of the substrate having a second conductivity type opposite the first conductivity type of the first region of the substrate, wherein the second region of the substrate includes a second pair of isolation regions that are self-aligned with and in contact with the first pair of isolation regions.
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Inventors: Jagar Singh, Jerome J. B. Ciavatti
  • Patent number: 10236358
    Abstract: Structures for a field-effect transistor and methods for forming a field-effect transistor. The structure includes a gate structure having a sidewall and a sidewall spacer arranged adjacent to the sidewall of the gate structure. The sidewall spacer includes an energy removal film material and one or more air gaps in the energy removal film material.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: March 19, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Suraj K. Patil, Jagar Singh
  • Patent number: 10236367
    Abstract: A device includes a substrate, a first well doped with dopants of a first conductivity type defined in the substrate, and a second well doped with dopants of a second conductivity type different than the first conductivity type defined in the substrate adjacent the first well to define a PN junction. The second well includes a silicon alloy portion displaced from the PN junction. A collector region contacts one of the first or second wells and has a dopant concentration higher than its contacted well. An emitter region contacts the other of the first or second wells and is doped with dopants of the first or second conductivity type different than the first or second well contacted by the emitter region. A base region contacts the other of the first or second well and has a dopant concentration higher than the first or second well contacted by the base region.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: March 19, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jagar Singh, Shiv Kumar Mishra
  • Publication number: 20190067191
    Abstract: Methods of forming a hybrid electrically programmable fuse (e-fuse) structure and the hybrid e-fuse structure are disclosed. In various embodiments, the e-fuse structure includes: a substrate; an insulator layer over the substrate; a pair of contact regions overlying the insulator layer; and a silicide channel overlying the insulator layer and connecting the pair of contact regions, the silicide channel having a first portion including silicide silicon and a second portion coupled with the first portion and on a common level with the first portion, the second portion including silicide silicon germanium (SiGe) or silicide silicon phosphorous (SiP).
    Type: Application
    Filed: August 25, 2017
    Publication date: February 28, 2019
    Inventors: Chun Yu Wong, Jagar Singh
  • Publication number: 20190013402
    Abstract: A semiconductor device includes a substrate, a first well doped with dopants of a first conductivity type defined in the substrate, and a second well doped with dopants of a second conductivity type different than the first conductivity type defined in the substrate adjacent the first well to define a PN junction between the first and second wells. The second well includes a silicon alloy portion displaced from the PN junction. A source region is positioned in one of the first well or the second well. A drain region is positioned in the other of the first well or the second well. A gate structure is positioned above the substrate laterally positioned between the source region and the drain region.
    Type: Application
    Filed: July 6, 2017
    Publication date: January 10, 2019
    Inventors: Jagar Singh, Shiv Kumar Mishra
  • Publication number: 20190013397
    Abstract: A device includes a substrate, a first well doped with dopants of a first conductivity type defined in the substrate, and a second well doped with dopants of a second conductivity type different than the first conductivity type defined in the substrate adjacent the first well to define a PN junction. The second well includes a silicon alloy portion displaced from the PN junction. A collector region contacts one of the first or second wells and has a dopant concentration higher than its contacted well. An emitter region contacts the other of the first or second wells and is doped with dopants of the first or second conductivity type different than the first or second well contacted by the emitter region. A base region contacts the other of the first or second well and has a dopant concentration higher than the first or second well contacted by the base region.
    Type: Application
    Filed: July 6, 2017
    Publication date: January 10, 2019
    Inventors: Jagar Singh, Shiv Kumar Mishra
  • Patent number: 10164006
    Abstract: Field-effect transistor structures for a laterally-diffused metal-oxide-semiconductor (LDMOS) device and methods of forming a LDMOS device. First and second fins are formed that extend vertically from a top surface of a substrate. A first isolation region is arranged between the first fin and the second fin. A body region of a first conductivity type is arranged partially in the substrate and partially in the second fin. A drain region of a second conductivity type is arranged partially in the substrate, partially in the first fin, and partially in the second fin. A source region is arranged within the body region in the first fin. A gate structure is arranged to overlap with a portion of the first fin. A second isolation region is arranged within the first fin, and is spaced along the first fin from the first isolation region.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: December 25, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jerome Ciavatti, Jagar Singh, Hui Zang
  • Patent number: 10121878
    Abstract: Field-effect transistor structures for a laterally-diffused metal-oxide-semiconductor (LDMOS) device and methods of forming a LDMOS device. First and second fins are formed on a substrate. A first well of a first conductivity type is arranged partially in the substrate and partially in the first fin. A second well of a second conductivity type is arranged partially in the substrate, partially in the first fin, and partially in the second fin. First and second source/drain regions of the second conductivity type are respectively formed within the first well in the first fin and within the second well in the second fin. Spaced-apart gate structures are formed that overlap with respective portions of the first fin. A doped region of the first conductivity type is arranged within the second well in the first fin between the first and second gate structures.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: November 6, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jerome Ciavatti, Jagar Singh, Hui Zang