Patents by Inventor Jordan D. Greenlee

Jordan D. Greenlee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230154856
    Abstract: A microelectronic device comprises a stack structure comprising insulative levels vertically interleaved with conductive levels. The conductive levels individually comprise a first conductive structure, and a second conductive structure laterally neighboring the first conductive structure, the second conductive structure exhibiting a concentration of 3-phase tungsten varying with a vertical distance from a vertically neighboring insulative level. The microelectronic device further comprises slot structures vertically extending through the stack structure and dividing the stack structure into block structures, and strings of memory cells vertically extending through the stack structure, the first conductive structures between laterally neighboring strings of memory cells, the second conductive structures between the slot structures and strings of memory cells nearest the slot structures. Related memory devices, electronic systems, and methods are also described.
    Type: Application
    Filed: January 23, 2023
    Publication date: May 18, 2023
    Inventors: Jordan D. Greenlee, John D. Hopkins, Everett A. McTeer, Yiping Wang, Rajesh Balachandran, Rita J. Klein, Yongjun J. Hu
  • Publication number: 20230148107
    Abstract: A microelectronic device comprises pillar structures extending vertically through an isolation material, conductive lines electrically coupled to the pillar structures, contact structures between the pillar structures and the conductive lines, and interconnect structures between the conductive lines and the contact structures. The conductive lines comprise one or more of titanium, ruthenium, aluminum, and molybdenum. The interconnect structures comprise a material composition that is different than one or more of a material composition of the contact structures and a material composition of the conductive lines. Related memory devices, electronic systems, and methods are also described.
    Type: Application
    Filed: December 30, 2022
    Publication date: May 11, 2023
    Inventors: John D. Hopkins, Jordan D. Greenlee, Marko Milojevic
  • Patent number: 11646206
    Abstract: Described are methods for forming a multilayer conductive structure for semiconductor devices. A seed layer is formed comprising a metal and an additional constituent that in combination with the metal inhibits nucleation of a fill layer of the metal formed over the seed layer. Tungsten may be doped or alloyed with silicon to form the seed layer, with a tungsten fill being formed over the seed layer.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: May 9, 2023
    Assignee: Micron Technology, Inc.
    Inventors: David Ross Economy, Brian Beatty, John Mark Meldrim, Yongjun Jeff Hu, Jordan D. Greenlee
  • Publication number: 20230121315
    Abstract: Some embodiments include a memory array having a vertical stack of alternating insulative levels and control gate levels. Channel material extends vertically along the stack. The control gate levels comprising conductive regions. The conductive regions include at least three different materials. Charge-storage regions are adjacent the control gate levels. Charge-blocking regions are between the charge-storage regions and the conductive regions.
    Type: Application
    Filed: December 16, 2022
    Publication date: April 20, 2023
    Applicant: Micron Technology, Inc.
    Inventors: David Ross Economy, Rita J. Klein, Jordan D. Greenlee, John Mark Meldrim, Brenda D. Kraus, Everett A. McTeer
  • Publication number: 20230116988
    Abstract: Some embodiments include a method of forming a conductive structure. A metal-containing conductive material is formed over a supporting substrate. A surface of the metal-containing conductive material is exposed to at least one radical form of hydrogen and to at least one oxidant. The exposure alters at least a portion of the metal-containing conductive material to thereby form at least a portion of the conductive structure. Some embodiments include a conductive structure which has a metal-containing conductive material with a first region adjacent to a second region. The first region has a greater concentration of one or both of fluorine and boron relative to the second region.
    Type: Application
    Filed: December 16, 2022
    Publication date: April 20, 2023
    Applicant: Micron Technology, Inc.
    Inventors: John D. Hopkins, Jordan D. Greenlee, Peng Xu
  • Publication number: 20230099418
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming an upper stack directly above a lower stack. The lower stack comprises vertically-alternating lower-first-tiers and lower-second-tiers. The upper stack comprises vertically-alternating upper-first-tiers and upper-second-tiers. Lower channel openings extend through the lower-first-tiers and the lower-second-tiers. The lower channel openings have sacrificial material therein. An upper of the lower-second-tiers or a lower of the upper-second-tiers comprises non-stoichiometric silicon dioxide that has a silicon-to-oxygen atomic ratio greater than 0.5. A higher of the upper-second-tiers that is above said lower upper-second-tier comprises silicon dioxide that has a silicon-to-oxygen atomic ratio less than or equal to 0.5. Upper channel openings are etched through the upper-first-tiers and the upper-second-tiers to stop on said upper lower-second-tier or said lower upper-second-tier.
    Type: Application
    Filed: December 7, 2022
    Publication date: March 30, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Daniel Billingsley, Jordan D. Greenlee, John D. Hopkins, Yongjun Jeff Hu, Swapnil Lengade
  • Patent number: 11600630
    Abstract: Some embodiments include an integrated assembly having a source structure, and having a stack of alternating conductive levels and insulative levels over the source structure. Cell-material-pillars pass through the stack. The cell-material-pillars are arranged within a configuration which includes a first memory-block-region and a second memory-block-region. The cell-material-pillars include channel material which is electrically coupled with the source structure. Memory cells are along the conductive levels and include regions of the cell-material-pillars. A panel is between the first and second memory-block-regions. The panel has a first material configured as a container shape. The container shape defines opposing sides and a bottom of a cavity. The panel has a second material within the cavity. The second material is compositionally different from the first material. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: March 7, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, Nancy M. Lomeli, John D. Hopkins, Jiewei Chen, Indra V. Chary, Jun Fang, Vladimir Samara, Kaiming Luo, Rita J. Klein, Xiao Li, Vinayak Shamanna
  • Publication number: 20230061327
    Abstract: A method of forming a microelectronic device comprises forming a sacrificial material over a base structure. Portions of the sacrificial material are replaced with an etch-resistant material. A stack structure is formed over the etch-resistant material and remaining portions of the sacrificial material. The stack structure comprises a vertically alternating sequence of insulative material and additional sacrificial material arranged in tiers, and at least one staircase structure horizontally overlapping the etch-resistant material and having steps comprising horizontal ends of the tiers. Slots are formed to vertically extend through the stack structure and the remaining portions of the sacrificial material. The sacrificial material and the additional sacrificial material are selectively replaced with conductive material after forming the slots to respectively form lateral contact structures and conductive structures. Microelectronic devices, memory devices, and electronic systems are also described.
    Type: Application
    Filed: October 17, 2022
    Publication date: March 2, 2023
    Inventors: John D. Hopkins, Jordan D. Greenlee, Nancy M. Lomeli
  • Patent number: 11594495
    Abstract: A microelectronic device comprises a stack structure comprising insulative levels vertically interleaved with conductive levels. The conductive levels individually comprise a first conductive structure, and a second conductive structure laterally neighboring the first conductive structure, the second conductive structure exhibiting a concentration of ?-phase tungsten varying with a vertical distance from a vertically neighboring insulative level. The microelectronic device further comprises slot structures vertically extending through the stack structure and dividing the stack structure into block structures, and strings of memory cells vertically extending through the stack structure, the first conductive structures between laterally neighboring strings of memory cells, the second conductive structures between the slot structures and strings of memory cells nearest the slot structures. Related memory devices, electronic systems, and methods are also described.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: February 28, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John D. Hopkins, Everett A. McTeer, Yiping Wang, Rajesh Balachandran, Rita J. Klein, Yongjun J. Hu
  • Publication number: 20230054920
    Abstract: A memory array comprising strings of memory cells comprises laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers above a conductor tier. Strings of memory cells comprise channel-material-string constructions that extend through the insulative tiers and the conductive tiers into the conductor tier. The channel material of the channel-material-string constructions directly electrically couples to conductor material of the conductor tier. The conductor tier comprises islands comprising material of different composition from that of the conductor material of the conductor tier that surrounds individual of the islands. The islands are directly against bottoms of the channel-material-string constructions. Intervening material is laterally-between and longitudinally-along immediately-laterally-adjacent of the memory blocks. Other aspects, including method, are disclosed.
    Type: Application
    Filed: August 23, 2021
    Publication date: February 23, 2023
    Applicant: Micron Technology, Inc.
    Inventors: John D. Hopkins, Jordan D. Greenlee
  • Publication number: 20230055422
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a conductor tier comprising conductor material on a substrate. Laterally-spaced memory-block regions are formed that individually comprise a vertical stack comprising alternating first tiers and second tiers are formed directly above the conductor tier. Material of the first tiers is sacrificial and of different composition from material of the first tiers. Channel-material strings extend through the first tiers and the second tiers. Conducting material in a lowest of the first tiers is formed that directly electrically couples together the channel material of individual of the channel-material strings and the conductor material of the conductor tier. A horizontally-elongated trench is formed between immediately-laterally-adjacent of the memory-block regions. The trenches extend downwardly into the conducting material.
    Type: Application
    Filed: August 23, 2021
    Publication date: February 23, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John D. Hopkins, M. Jared Barclay, Andrew Li, Aireus Christensen
  • Publication number: 20230055319
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a lower portion of a stack that will comprise vertically-alternating first tiers and second tiers. The stack comprises laterally-spaced memory-block regions. Material of the first tiers is of different composition from material of the second tiers. The lower portion comprises an upper second tier comprising insulative material. The vertically-alternating first tiers and second tiers of an upper portion of the stack are formed above the lower portion. Channel-material strings are formed that extend through the upper portion to the lower portion. Horizontally-elongated lines are formed in the upper second tier longitudinally-along opposing lateral edges of the memory-block regions. Material of the lines is of different composition. from that of the insulative material in the upper second tier that is laterally-between the lines.
    Type: Application
    Filed: August 23, 2021
    Publication date: February 23, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Alyssa N. Scarbrough, John D. Hopkins, Collin Howder, Jordan D. Greenlee
  • Publication number: 20230054054
    Abstract: A memory array comprising strings of memory cells comprises laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers above a conductor tier. Strings of memory cells comprise channel-material strings that extend through the insulative tiers and the conductive tiers. The channel-material strings directly electrically couple to conductor material of the conductor tier. The insulative tier immediately-above a lowest of the conductive tiers comprises a lower first insulating material and an upper second insulating material above the upper first insulating material. The upper second insulating material is of different composition from that of the lower first insulating material. Intervening material is laterally-between and longitudinally-along immediately-laterally-adjacent of the memory blocks. Other embodiments, including method, are disclosed.
    Type: Application
    Filed: August 23, 2021
    Publication date: February 23, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Alyssa N. Scarbrough, John D. Hopkins, Jordan D. Greenlee
  • Publication number: 20230052332
    Abstract: A memory array comprising strings of memory cells comprises laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers above a conductor tier. The conductor tier is directly above a lower tier that comprises conductive lines that are horizontally elongated. An insulator tier is vertically between the conductor tier and the lower tier. Strings of memory cells comprise channel-material strings that extend through the insulative tiers and the conductive tiers. The channel-material strings directly electrically couple to the conductor material of the conductor tier. A through-array-via (TAV) region comprises TAVs that individually directly electrically couple to one of the conductive lines. Insulator walls are in the TAV region. The insulator walls extend vertically through the conductor tier and the insulator tier to the lower tier and are horizontally elongated. Methods are also disclosed.
    Type: Application
    Filed: August 10, 2021
    Publication date: February 16, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Alyssa N. Scarbrough, M. Jared Barclay, John D. Hopkins, Jordan D. Greenlee
  • Patent number: 11581330
    Abstract: A memory array comprises laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers. Channel-material strings of memory cells extend through the insulative tiers and the conductive tiers. Dummy pillars extend through the insulative tiers and the conductive tiers. A lowest of the conductive tiers comprises conducting material and dummy-region material that is aside and of different composition from that of the conducting material. The channel-material strings extend through the conducting material of the lowest conductive tier. The dummy pillars extend through the dummy-region material of the lowest conductive tier. Other embodiments, including method, are disclosed.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: February 14, 2023
    Assignee: Micron Technology, Inc.
    Inventors: John D. Hopkins, Jordan D. Greenlee, Nancy M. Lomeli, Alyssa N. Scarbrough
  • Patent number: 11574870
    Abstract: A microelectronic device comprises pillar structures extending vertically through an isolation material, conductive lines electrically coupled to the pillar structures, contact structures between the pillar structures and the conductive lines, and interconnect structures between the conductive lines and the contact structures. The conductive lines comprise one or more of titanium, ruthenium, aluminum, and molybdenum. The interconnect structures comprise a material composition that is different than one or more of a material composition of the contact structures and a material composition of the conductive lines. Related memory devices, electronic systems, and methods are also described.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: February 7, 2023
    Assignee: Micron Technology, Inc.
    Inventors: John D. Hopkins, Jordan D. Greenlee, Marko Milojevic
  • Patent number: 11569120
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers. Horizontally-elongated trenches are formed into the stack to form laterally-spaced memory-block regions. Bridge material is formed across the trenches laterally-between and longitudinally-along immediately-laterally-adjacent of the memory-block regions. The bridge material comprises longitudinally-alternating first and second regions. The first regions of the bridge material are ion implanted differently than the second regions of the bridge material to change relative etch rate of one of the first or second regions relative to the other in an etching process.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: January 31, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Daniel Billingsley, Jordan D. Greenlee, Yongjun Jeff Hu
  • Patent number: 11569258
    Abstract: Some embodiments include a method of forming stacked memory decks. A first deck has first memory cells arranged in first tiers disposed one atop another, and has a first channel-material pillar extending through the first tiers. An inter-deck structure is over the first deck. The inter-deck structure includes an insulative expanse, and a region extending through the insulative expanse and directly over the first channel-material pillar. The region includes an etch-stop structure. A second deck is formed over the inter-deck structure. The second deck has second memory cells arranged in second tiers disposed one atop another. An opening is formed to extend through the second tiers and to the etch-stop structure. The opening is subsequently extended through the etch-stop structure. A second channel-material pillar is formed within the opening and is coupled to the first channel-material pillar. Some embodiments include integrated assemblies.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: January 31, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Liu Liu, David Daycock, Rithu K. Bhonsle, Giovanni Mazzone, Narula Bilik, Jordan D. Greenlee, Minsoo Lee, Benben Li
  • Publication number: 20230022792
    Abstract: Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a device including tiers of materials located one over another, the tiers of materials including respective memory cells and control gates for the memory cells. The control gates include respective portions that collectively form part of a staircase structure. The staircase structure includes first regions and second regions coupled to the first regions. The second regions include respective sidewalls in which a portion of each of the first regions and a portion of each of the second regions are part of a respective control gate of the control gates. The device also includes conductive pads electrically separated from each other and located on the first regions of the staircase structure, and conductive contacts contacting the conductive pads.
    Type: Application
    Filed: July 21, 2021
    Publication date: January 26, 2023
    Inventors: Alyssa N. Scarbrough, Yiping Wang, Jordan D. Greenlee, John Hopkins
  • Patent number: 11562773
    Abstract: Some embodiments include a method of forming a conductive structure. A metal-containing conductive material is formed over a supporting substrate. A surface of the metal-containing conductive material is exposed to at least one radical form of hydrogen and to at least one oxidant. The exposure alters at least a portion of the metal-containing conductive material to thereby form at least a portion of the conductive structure. Some embodiments include a conductive structure which has a metal-containing conductive material with a first region adjacent to a second region. The first region has a greater concentration of one or both of fluorine and boron relative to the second region.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: January 24, 2023
    Assignee: Micron Technology, Inc.
    Inventors: John D. Hopkins, Jordan D. Greenlee, Peng Xu