Patents by Inventor Jordan D. Greenlee

Jordan D. Greenlee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230016742
    Abstract: Memory circuitry comprising strings of memory cells comprises a vertical stack comprising alternating insulative tiers and conductive tiers. Channel-material strings extend through the insulative tiers and the conductive tiers. Charge-passage material is in the conductive tiers laterally-outward of the channel-material strings. Storage material is in the conductive tiers laterally-outward of the charge-passage material. At least one of AlOq, ZrOq, and HfOq is in the conductive tiers laterally-outward of the storage material. At least one of (a) and (b) is in the conductive tiers laterally-outward of the at least one of AlOq, ZrOq, and HfOq, where, (a): MoOxNy, where each of “x” and “y” is from 0 to 4.0; and (b): MoMz, where “M” is at least one of W, a Group 7 metal, and a Group 8 metal; “z” being greater than 0 and less than 1.0. Metal material is in the conductive tiers laterally-outward of the at least one of the (a) and the (b). Memory cells are in individual of the conductive tiers.
    Type: Application
    Filed: July 14, 2021
    Publication date: January 19, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Daniel Billingsley, Jordan D. Greenlee, Yongjun Jeff Hu, Rita J. Klein, Everett A. McTeer
  • Publication number: 20230021060
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a conductor tier comprising conductor material on a substrate. Laterally-spaced memory-block regions individually comprise a vertical stack comprising alternating first tiers and second tiers are formed directly above the conductor tier. Channel-material strings of memory cells extend through the first tiers and the second tiers. A lower of the first tiers comprises sacrificial material. A horizontally-elongated slot is formed through the first and second tiers to the sacrificial material in individual of the memory-block regions to form laterally-spaced sub-block regions in the individual memory-block regions. The sacrificial material is isotropically etched from the lower first tier through the horizontally-elongated slots.
    Type: Application
    Filed: July 16, 2021
    Publication date: January 19, 2023
    Applicant: Micron Technology, Inc.
    Inventors: John D. Hopkins, Jordan D. Greenlee, Alyssa N. Scarbrough
  • Patent number: 11552090
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming an upper stack directly above a lower stack. The lower stack comprises vertically-alternating lower-first-tiers and lower-second-tiers. The upper stack comprises vertically-alternating upper-first-tiers and upper-second-tiers. Lower channel openings extend through the lower-first-tiers and the lower-second-tiers. The lower channel openings have sacrificial material therein. An upper of the lower-second-tiers or a lower of the upper-second-tiers comprises non-stoichiometric silicon dioxide that has a silicon-to-oxygen atomic ratio greater than 0.5. A higher of the upper-second-tiers that is above said lower upper-second-tier comprises silicon dioxide that has a silicon-to-oxygen atomic ratio less than or equal to 0.5. Upper channel openings are etched through the upper-first-tiers and the upper-second-tiers to stop on said upper lower-second-tier or said lower upper-second-tier.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: January 10, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Daniel Billingsley, Jordan D. Greenlee, John D. Hopkins, Yongjun Jeff Hu, Swapnil Lengade
  • Publication number: 20230005956
    Abstract: Some embodiments include methods of forming integrated assemblies. A conductive structure is formed to include a semiconductor-containing material over a metal-containing material. An opening is formed to extend into the conductive structure. A conductive material is formed along a bottom of the opening. A stack of alternating first and second materials is formed over the conductive structure either before or after forming the conductive material. Insulative material and/or channel material is formed to extend through the stack to contact the conductive material. Some embodiments include integrated assemblies.
    Type: Application
    Filed: September 9, 2022
    Publication date: January 5, 2023
    Applicant: Micron Technology, Inc.
    Inventors: John D. Hopkins, Justin D. Shepherdson, Collin Howder, Jordan D. Greenlee
  • Publication number: 20220415917
    Abstract: A microelectronic device comprises a stack structure comprising alternating conductive structures and insulative structures arranged in tiers, each of the tiers individually comprising a conductive structure and an insulative structure, strings of memory cells vertically extending through the stack structure, the strings of memory cells comprising a channel material vertically extending through the stack structure, and another stack structure vertically overlying the stack structure and comprising other tiers of alternating levels of other conductive structures and other insulative structures, the other conductive structures exhibiting a conductivity greater than a conductivity of the conductive structures of the stack structure. Related memory devices, electronic systems, and methods are also described.
    Type: Application
    Filed: August 26, 2022
    Publication date: December 29, 2022
    Inventors: Daniel Billingsley, Matthew J. King, Jordan D. Greenlee, Yongjun J. Hu, Tom George, Amritesh Rai, Sidhartha Gupta, Kyle A. Ritter
  • Patent number: 11538822
    Abstract: Some embodiments include methods of forming integrated assemblies. A conductive structure is formed to include a semiconductor-containing material over a metal-containing material. An opening is formed to extend into the conductive structure. A conductive material is formed along a bottom of the opening. A stack of alternating first and second materials is formed over the conductive structure either before or after forming the conductive material. Insulative material and/or channel material is formed to extend through the stack to contact the conductive material. Some embodiments include integrated assemblies.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: December 27, 2022
    Assignee: Micron Technology, Inc.
    Inventors: John D. Hopkins, Justin D. Shepherdson, Collin Howder, Jordan D. Greenlee
  • Publication number: 20220399440
    Abstract: Some embodiments include an integrated assembly having a source structure. The source structure includes, in ascending order, a first conductively-doped semiconductor material, one or more first insulative layers, a second conductively-doped semiconductor material, one or more second insulative layers, and a third conductively-doped semiconductor material. The source structure includes blocks extending through the second conductively-doped semiconductor material. Conductive levels are over the source structure. Channel material extends vertically along the conductive levels, and extends into the source structure to be in direct contact with the second conductively-doped semiconductor material. One or more memory cell materials are between the channel material and the conductive levels. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: August 18, 2022
    Publication date: December 15, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John D. Hopkins
  • Publication number: 20220399357
    Abstract: Integrated circuitry comprising a memory array comprises strings of memory cells comprising laterally-spaced memory blocks individually comprising a first vertical stack comprising alternating insulative tiers and conductive tiers. Strings of memory cells comprise channel-material strings that extend through the insulative tiers and the conductive tiers. The conductive tiers individually comprise a horizontally-elongated conductive line. A second vertical stack is aside the first vertical stack. The second vertical stack comprises an tipper portion and a lower portion. The upper portion comprises vertically alternating first tiers and second insulating tiers that are of different composition relative one another. The lower portion comprises an upper polysilicon-comprising layer, a lower polysilicon-comprising layer, an intervening-material layer vertically between the tipper and lower polysilicon-comprising layers.
    Type: Application
    Filed: June 15, 2021
    Publication date: December 15, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Alyssa N. Scarbrough, Jordan D. Greenlee, John D. Hopkins
  • Patent number: 11527546
    Abstract: A microelectronic device comprises a stack structure comprising alternating conductive structures and insulative structures arranged in tiers, each of the tiers individually comprising a conductive structure and an insulative structure, strings of memory cells vertically extending through the stack structure, the strings of memory cells comprising a channel material vertically extending through the stack structure, and another stack structure vertically overlying the stack structure and comprising other tiers of alternating levels of other conductive structures and other insulative structures, the other conductive structures exhibiting a conductivity greater than a conductivity of the conductive structures of the stack structure. Related memory devices, electronic systems, and methods are also described.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: December 13, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Daniel Billingsley, Matthew J. King, Jordan D. Greenlee, Yongjun J. Hu, Tom George, Amritesh Rai, Sidhartha Gupta, Kyle A. Ritter
  • Patent number: 11515320
    Abstract: A method of forming a microelectronic device comprises forming a sacrificial material over a base structure. Portions of the sacrificial material are replaced with an etch-resistant material. A stack structure is formed over the etch-resistant material and remaining portions of the sacrificial material. The stack structure comprises a vertically alternating sequence of insulative material and additional sacrificial material arranged in tiers, and at least one staircase structure horizontally overlapping the etch-resistant material and having steps comprising horizontal ends of the tiers. Slots are formed to vertically extend through the stack structure and the remaining portions of the sacrificial material. The sacrificial material and the additional sacrificial material are selectively replaced with conductive material after forming the slots to respectively form lateral contact structures and conductive structures. Microelectronic devices, memory devices, and electronic systems are also described.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: November 29, 2022
    Assignee: Micron Technology, Inc.
    Inventors: John D. Hopkins, Jordan D. Greenlee, Nancy M. Lomeli
  • Publication number: 20220359565
    Abstract: Some embodiments include a NAND memory array having a vertical stack of alternating insulative levels and conductive levels. The conductive levels include terminal regions, and include nonterminal regions proximate the terminal regions. The terminal regions are vertically thicker than the nonterminal regions, and are configured as segments which are vertically stacked one atop another and which are vertically spaced from one another. Blocks are adjacent to the segments and have approximately a same vertical thickness as the segments. The blocks include high-k dielectric material, charge-blocking material and charge-storage material. Channel material extends vertically along the stack and is adjacent to the blocks. Some embodiments include integrated assemblies. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 10, 2022
    Applicant: Micron Technology, Inc.
    Inventors: John D. Hopkins, Shyam Surthi, Jordan D. Greenlee
  • Publication number: 20220359012
    Abstract: A memory array comprising laterally-spaced memory blocks individually comprises a vertical stack comprising alternating insulative tiers and conductive tiers. Channel-material strings of memory cells extend through the insulative tiers and the conductive tiers. The laterally-spaced memory blocks in a lower one of the conductive tiers comprises elemental-form metal that extends longitudinally-along the laterally-spaced memory blocks proximate laterally-outer sides of the laterally-spaced memory blocks. A metal silicide or a metal-germanium compound is directly against laterally-inner sides of the elemental-form metal in the lower conductive tier and that extends longitudinally-along the laterally-spaced memory blocks in the lower conductive tier. The metal of the metal silicide or of the metal-germanium compound is the same as that of the elemental-form metal. Other embodiments, including method, are disclosed.
    Type: Application
    Filed: May 10, 2021
    Publication date: November 10, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John D. Hopkins, Andrew Li, Alyssa N. Scarbrough
  • Publication number: 20220336494
    Abstract: Some embodiments include an integrated assembly having a second deck over a first deck. The first deck has first memory cell levels, and the second deck has second memory cell levels. A pair of cell-material-pillars pass through the first and second decks. Memory cells are along the first and second memory cell levels. The cell-material-pillars are a first pillar and a second pillar. An intermediate level is between the first and second decks. The intermediate level includes a region between the first and second pillars. The region includes a first segment adjacent the first pillar, a second segment adjacent the second pillar, and a third segment between the first and second segments. The first and second segments include a first composition, and the third segment includes a second composition different from the first composition. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John D. Hopkins
  • Patent number: 11476332
    Abstract: Some embodiments include an integrated assembly having a source structure. The source structure includes, in ascending order, a first conductively-doped semiconductor material, one or more first insulative layers, a second conductively-doped semiconductor material, one or more second insulative layers, and a third conductively-doped semiconductor material. The source structure includes blocks extending through the second conductively-doped semiconductor material. Conductive levels are over the source structure. Channel material extends vertically along the conductive levels, and extends into the source structure to be in direct contact with the second conductively-doped semiconductor material. One or more memory cell materials are between the channel material and the conductive levels. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: October 18, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John D. Hopkins
  • Patent number: 11476274
    Abstract: A memory array comprising strings of memory cells comprises an upper stack above a lower stack. The lower stack comprises vertically-alternating lower conductive tiers and lower insulative tiers. The upper stack comprises vertically-alternating upper conductive tiers and upper insulative tiers. An intervening tier is vertically between the upper and lower stacks. The intervening tier is at least predominantly polysilicon and of different composition from compositions of the upper conductive tier and the upper insulative tier immediately-above the intervening tier and of different composition from compositions of the lower conductive tier and the lower insulative tier immediately-below the intervening tier. Channel-material strings of memory cells extend through the upper stack, the intervening tier, and the lower stack. Other structures and methods are disclosed.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: October 18, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Daniel Billingsley, Jordan D. Greenlee, John D. Hopkins, Yongjun Jeff Hu
  • Publication number: 20220328519
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a conductor tier comprising conductor material on a substrate. Laterally-spaced memory-block regions are formed and individually comprise a vertical stack comprising alternating first tiers and second tiers directly above the conductor tier. Channel-material strings of memory cells extend through the first tiers and the second tiers. Horizontally-elongated lines are formed in the conductor material between the laterally-spaced memory-block regions. The horizontally-elongated lines are of different composition from an upper portion of the conductor material that is laterally-between the horizontally-elongated lines.
    Type: Application
    Filed: June 27, 2022
    Publication date: October 13, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John D. Hopkins
  • Publication number: 20220320129
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a conductor tier comprising conductor material on a substrate. Laterally-spaced memory-block regions are formed that individually comprise a vertical stack comprising alternating first tiers and second tiers directly above the conductor tier. Channel-material strings of memory cells extend through the first tiers and the second tiers. Horizontally-elongated lines are formed in the conductor tier between the laterally-spaced memory-block regions. The horizontally-elongated lines are of different composition from an upper portion of the conductor material and comprise metal material. After the horizontally-elongated lines are formed, conductive material is formed in a lower of the first tiers and that directly electrically couples together the channel material of individual of the channel-material strings and the conductor material of the conductor tier.
    Type: Application
    Filed: April 6, 2021
    Publication date: October 6, 2022
    Inventors: Jordan D. Greenlee, John D. Hopkins
  • Publication number: 20220320128
    Abstract: Some embodiments include an integrated assembly having a memory region and another region adjacent the memory region. Channel-material-pillars are arranged within the memory region, and conductive posts are arranged within said other region. A source structure is coupled to lower regions of the channel-material-pillars. A panel extends across the memory region and said other region, and separates a first memory-block-region from a second memory-block-region. Doped-semiconductor-material is directly adjacent to the panel within the memory region and the other region. Rings laterally surround lower regions of the conductive posts. The rings are between the conductive posts and the doped-semiconductor-material. The rings include laminates of two or more materials, with at least one of said two or more materials being insulative. Some embodiments include methods for forming integrated assemblies.
    Type: Application
    Filed: April 6, 2021
    Publication date: October 6, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, Alyssa N. Scarbrough, John D. Hopkins
  • Publication number: 20220310524
    Abstract: Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a first dielectric material; a second dielectric material separated from the first dielectric material; a memory cell string including a pillar extending through the first and second dielectric materials, the pillar including a portion between the first and second dielectric materials; an additional dielectric material contacting the portion of the pillar; a conductive material contacting the additional dielectric material; and a tungsten structure including a portion of tungsten contacting the conductive material, wherein a majority of the portion of tungsten is beta-phase tungsten.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 29, 2022
    Inventors: Jordan D. Greenlee, Rita J. Klein, Everett Allen McTeer, John Hopkins, David Ross Economy
  • Publication number: 20220310522
    Abstract: A microelectronic device comprises a stack structure comprising insulative levels vertically interleaved with conductive levels. The conductive levels individually comprise a first conductive structure, and a second conductive structure laterally neighboring the first conductive structure, the second conductive structure exhibiting a concentration of ?-phase tungsten varying with a vertical distance from a vertically neighboring insulative level. The microelectronic device further comprises slot structures vertically extending through the stack structure and dividing the stack structure into block structures, and strings of memory cells vertically extending through the stack structure, the first conductive structures between laterally neighboring strings of memory cells, the second conductive structures between the slot structures and strings of memory cells nearest the slot structures. Related memory devices, electronic systems, and methods are also described.
    Type: Application
    Filed: March 23, 2021
    Publication date: September 29, 2022
    Inventors: Jordan D. Greenlee, John D. Hopkins, Everett A. McTeer, Yiping Wang, Rajesh Balachandran, Rita J. Klein, Yongjun J. Hu