Patents by Inventor Joy Laskar

Joy Laskar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8288895
    Abstract: A tunable capacitor device may be provided in accordance with example embodiments of the invention. The tunable capacitor device may include a first capacitor; a second capacitor; a third capacitor, where the first, second, and third capacitors are connected in series, wherein the second capacitor is positioned between the first capacitor and the second capacitor; and at least one switch transistor, where the at least one switch transistor is connected in parallel with the second capacitor.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: October 16, 2012
    Assignee: Samsung Electro-Mechanics
    Inventors: Youngchang Yoon, Hyungwook Kim, Minsik Ahn, Chang-Ho Lee, Joy Laskar
  • Patent number: 8286328
    Abstract: A method of fabricating an ultra-high frequency module is disclosed. The method includes providing a top layer; drilling the top layer; milling the top layer; providing a bottom; milling the bottom layer to define a bottom layer cavity; aligning the top layer and the bottom layer; and adhering the top layer to the bottom layer. The present invention also includes an ultra-high frequency module operating at ultra-high speeds having a top layer, the top layer defining a top layer cavity; a bottom layer, the bottom layer defining a bottom layer cavity; and an adhesive adhering both the top layer to the bottom layer, wherein the top layer and the bottom layer are formed from a large area panel of a printed circuit board.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: October 16, 2012
    Inventors: Stephane Pinel, Joy Laskar
  • Publication number: 20120149306
    Abstract: A method for interference suppression, including receiving a sample of an aggressor communication signal from a sensor embedded in a flex circuit, emulating interference that the aggressor communication signal imposes on a victim communication signal, and suppressing the imposed interference in response to applying the emulated interference to the victim communication signal. In other aspects, the flex circuit comprises a plurality of traces running substantially parallel to one another along a surface of the flex circuit, and the sensor comprises one of the plurality of traces and one of a plurality of traces of another flex circuit. In still other aspects, the flex circuit comprises a plurality of traces running substantially parallel to one another and the sensor comprises a trace of the flex circuit running perpendicular to the plurality of traces running substantially parallel to one another.
    Type: Application
    Filed: February 15, 2012
    Publication date: June 14, 2012
    Inventors: Edward Gebara, Andrew Joo Kim, Joy Laskar, Anthony Stelliga, Emmanouil M. Tentzeris
  • Patent number: 8179205
    Abstract: Systems and methods for provided for linearization systems and methods for variable attenuators. The variable attenuators can include series transistors along a main signal path from the input to output, as well as shunt transistors. A bootstrapping body bias circuit can be used with one or of the series transistors to allow the body of a connected transistor to swing responsive to a received RF input signal. As the RF signal increases and affects the gate-to-source voltage difference of a transistor, a bootstrapping body bias circuit can adaptively adjust the threshold voltage of the connected transistor and compensate the channel resistance variation resulting from gate-to-source voltage swing. The bootstrapping body bias circuit can be implemented using passive elements, active elements, or a combination thereof.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: May 15, 2012
    Assignee: Samsung Electro-Mechanics
    Inventors: Yanyu Huang, Wangmyong Woo, Chang-Ho Lee, Joy Laskar
  • Patent number: 8165535
    Abstract: Systems and methods may be provided for a CMOS RF antenna switch. The systems and methods for the CMOS RF antenna switch may include an antenna that is operative to transmit and receive signals over at least one radio frequency (RF) band, and a transmit switch coupled to the antenna, where the transmit switch is enabled to transmit a respective first signal to the antenna and disabled to prevent transmission of the first signal to the antenna. the systems and methods for the CMOS RF antenna switch may further include a receiver switch coupled to the antenna, where the receiver switch forms a filter when enabled and a resonant circuit when disabled, where the filter provides for reception of a second signal received by the antenna, and where the resonant circuit blocks reception of at least the first signal.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: April 24, 2012
    Assignee: Samsung Electro-Mechanics
    Inventors: Minsik Ahn, Chang-Ho Lee, Jaejoon Chang, Wangmyong Woo, Haksun Kim, Joy Laskar
  • Patent number: 8135350
    Abstract: A system for suppressing interference imposed on a victim communication signal by an aggressor communication signal including a circuit that comprises an input port, an output port, and a signal processing circuit connected between the input port and the output port, the signal processing circuit being operative to produce an interference compensation signal at the output port, for application to the victim communication signal, via processing a sample of the aggressor communication signal transmitted through the input port, and the input port being configured to connect to a sampling system that includes a first circuit trace running along a surface of a flex circuit of a portable wireless device that is dedicated to sensing the aggressor communication signal flowing on a second circuit trace running along the surface of the flex circuit.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: March 13, 2012
    Assignee: Quellan, Inc.
    Inventors: Edward Gebara, Andrew Joo Kim, Joy Laskar, Anthony Stelliga, Emmanouil M. Tentzeris
  • Patent number: 8106712
    Abstract: Systems and methods for providing a self-mixing adaptive bias circuit that may include a mixer, low-pass filter or a phase shifter, and a bias feeding block. The self-mixing adaptive bias circuit may generate an adaptive bias signal depending on input signal power level. As the input power level goes up, the adaptive bias circuit increases the bias voltage or bias current such that the amplifier will save current consumption at low power operation levels and obtain better linearity at high power operation levels compared to conventional biasing techniques. Moreover, the adaptive bias output signal can be used to cancel the third-order intermodulation terms (IM3) to further enhance the linearity as a secondary effect.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: January 31, 2012
    Assignees: Georgia Tech Research Corporation, Samsung Electro-Mechanics
    Inventors: Dong Ho Lee, Kyu Hwan An, Chang-Ho Lee, Joy Laskar
  • Patent number: 8081948
    Abstract: An analog multi-gigabit receiver and/or transceiver can be implemented for the reception and demodulation of multi-gigabits quadrature phase shift keying (QPSK) modulated using a CMOS (complementary metal-oxide semiconductor) process. Further, an analog multi-gigabit receiver and/or transceiver can be implemented for the reception and demodulation of multi-gigabits binary phase shift keying (BPSK), minimum shift keying (MSK), and/or amplitude shift keying (ASK) signal modulated in CMOS processes.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: December 20, 2011
    Assignee: Georgia Tech Research Corporation
    Inventors: Stephane Pinel, Joy Laskar, David Yeh, Bevin George Perumana, Saikat Sarkar
  • Publication number: 20110291872
    Abstract: An analog to digital converter for operating at high speeds can be implemented with a micro-comparator/sampler, an encoder, and a selector. The micro-comparator includes an input from an antenna of a receiver/transceiver system; a transistor pair; reset transistor; cascaded inverters; an inverter circuit; a buffer; and a D flip flop circuit. Depending on the number of micro-comparator/samplers placed in parallel, a number of bits can be generated. For example, 15 bits from 15 different micro-comparator/samplers can be inserted into a 15 to 4 bit encoder to generate 4 bits.
    Type: Application
    Filed: July 31, 2008
    Publication date: December 1, 2011
    Applicant: Georgia Tech Research Corporation
    Inventors: Stephane Pinel, Joy Laskar
  • Patent number: 8067987
    Abstract: A voltage controlled oscillator-phase lock loop (VCO-PLL) system includes a voltage controlled oscillator (VCO) system implementing four-channel architecture, such that two bands support two channels; a phase-locked-loop (PLL) system; and a mixer system. The VCO system further includes a control circuit; a first cross-coupled oscillator system adapted to receive a source voltage; a second cross-coupled oscillator system adapted to receive the source voltage; and a plurality of isolation buffer systems adapted to protect the first and second cross-coupled oscillator systems.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: November 29, 2011
    Assignee: Georgia Tech Research Corporation
    Inventors: Padmanava Sen, Saikat Sarkar, Stephane Pinel, Joy Laskar, Francesco Barale
  • Publication number: 20110285481
    Abstract: Systems and methods for provided for linearization systems and methods for variable attenuators. The variable attenuators can include series transistors along a main signal path from the input to output, as well as shunt transistors. A bootstrapping body bias circuit can be used with one or of the series transistors to allow the body of a connected transistor to swing responsive to a received RF input signal. As the RF signal increases and affects the gate-to-source voltage difference of a transistor, a bootstrapping body bias circuit can adaptively adjust the threshold voltage of the connected transistor and compensate the channel resistance variation resulting from gate-to-source voltage swing. The bootstrapping body bias circuit can be implemented using passive elements, active elements, or a combination thereof.
    Type: Application
    Filed: May 21, 2010
    Publication date: November 24, 2011
    Applicants: GEORGIA TECH RESEARCH CORPORATION, SAMSUNG ELECTRO-MECHANICS COMPANY
    Inventors: Yanyu Huang, Wangmyong Woo, Chang-Ho Lee, Joy Laskar
  • Publication number: 20110281524
    Abstract: A system for suppressing interference imposed on a victim communication signal by an aggressor communication signal including a circuit that comprises an input port, an output port, and a signal processing circuit connected between the input port and the output port, the signal processing circuit being operative to produce an interference compensation signal at the output port, for application to the victim communication signal, via processing a sample of the aggressor communication signal transmitted through the input port, and the input port being configured to connect to a sampling system that includes a first circuit trace running along a surface of a flex circuit of a portable wireless device that is dedicated to sensing the aggressor communication signal flowing on a second circuit trace running along the surface of the flex circuit.
    Type: Application
    Filed: July 26, 2011
    Publication date: November 17, 2011
    Inventors: Edward Gebara, Andrew Joo Kim, Joy Laskar, Anthony Stelliga, Emmanouil M. Tentzeris
  • Patent number: 8044540
    Abstract: A SPDT or SPMT switch may include a transformer having a primary winding and a secondary winding, where a first end of the secondary winding is connected to a single pole port, where a first end of the primary winding is connected to a first throw port; a first switch having a first end and a second end, where the first end is connected to ground; and a second switch, where a second end of the secondary winding is connected to both a second end of the first switch and a first end of the second switch, where a second end of the second switch is connected to a second throw port, where the first switch controls a first communication path between the single pole port and the first throw port, and where the second switch controls a second communication path between the second throw port and the single pole port.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: October 25, 2011
    Assignees: Georgia Tech Research Corporation, Samsung Electro-Mechanics
    Inventors: Dong Ho Lee, Minsik Ahn, Kyu Hwan An, Wangmyong Woo, Chang-Ho Lee, Joy Laskar
  • Publication number: 20110207425
    Abstract: A receiver system and a demodulator system are configured to receive and demodulate, respectively, multi-gigabit millimeter wave signals being wirelessly transmitted in the unlicensed wireless band near 60 GHz.
    Type: Application
    Filed: August 4, 2010
    Publication date: August 25, 2011
    Applicant: Georgia Tech Research Corporation
    Inventors: Eric JUNTUNEN, Stephane PINEL, Joy LASKAR, David YEH, Saikat SARKAR
  • Patent number: 8005430
    Abstract: Signals propagating on an aggressor communication channel can cause interference in a victim communication channel. A sensor coupled to the aggressor channel can obtain a sample of the aggressor signal. The sensor can be integrated with or embedded in a system, such as a flex circuit or a circuit board, that comprises the aggressor channel. The sensor can comprise a dedicated conductor or circuit trace that is near an aggressor conductor, a victim conductor, or an EM field associated with the interference. An interference compensation circuit can receive the sample from the sensor. The interference compensation circuit can have at least two operational modes of operation. In the first mode, the circuit can actively generate or output a compensation signal that cancels, corrects, or suppresses the interference. The second mode can be a standby, idle, power-saving, passive, or sleep mode.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: August 23, 2011
    Assignee: Quellan Inc.
    Inventors: Edward Gebara, Andrew Joo Kim, Joy Laskar, Anthony Stelliga, Emmanouil M. Tentzeris
  • Patent number: 7961048
    Abstract: An integrated power amplifier can include a carrier amplifier, where the carrier amplifier is connected to a first quarter wave transformer at the input of the carrier amplifier.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: June 14, 2011
    Assignees: Samsung Electro-Mechanics Company, Georgia Tech Research Corporation
    Inventors: Michael Alan Oakley, Dong Ho Lee, Kyu Hwan An, Chang-Ho Lee, Joy Laskar
  • Publication number: 20110127849
    Abstract: A tunable capacitor device may be provided in accordance with example embodiments of the invention. The tunable capacitor device may include a first capacitor; a second capacitor; a third capacitor, where the first, second, and third capacitors are connected in series, wherein the second capacitor is positioned between the first capacitor and the second capacitor; and at least one switch transistor, where the at least one switch transistor is connected in parallel with the second capacitor.
    Type: Application
    Filed: November 27, 2009
    Publication date: June 2, 2011
    Applicants: SAMSUNG ELECTRO-MECHANICS COMPANY, GEORGIA TECH RESEARCH CORPORATION
    Inventors: Youngchang Yoon, Hyungwook Kim, Minsik Ahn, Chang-Ho Lee, Joy Laskar
  • Patent number: 7952433
    Abstract: Systems and methods are provided for power amplifiers with discrete power control. The systems and methods may include a plurality of unit power amplifiers; a plurality of primary windings, wherein each primary winding is connected to at least one respective output port of a respective one the plurality of unit power amplifiers; a secondary winding inductively coupled to the plurality of primary windings, where the secondary winding provides an overall output; a bias controller, where the bias controller provides a respective bias voltage based at least in part on a level of output power to one or more of the plurality of unit power amplifiers; and a switch controller, where the switch controller operates to activate or deactivate at least one of the plurality of unit power amplifiers via a respective control signal.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: May 31, 2011
    Assignees: Samsung Electro-Mechanics Company, Georgia Tech Research Corporation
    Inventors: Kyu Hwan An, Dong Ho Lee, Chang-Ho Lee, Joy Laskar
  • Publication number: 20110120628
    Abstract: A method of fabricating an ultra-high frequency module is disclosed. The method includes providing a top layer; drilling the top layer; milling the top layer; providing a bottom; milling the bottom layer to define a bottom layer cavity; aligning the top layer and the bottom layer; and adhering the top layer to the bottom layer. The present invention also includes an ultra-high frequency module operating at ultra-high speeds having a top layer, the top layer defining a top layer cavity; a bottom layer, the bottom layer defining a bottom layer cavity; and an adhesive adhering both the top layer to the bottom layer, wherein the top layer and the bottom layer are formed from a large area panel of a printed circuit board.
    Type: Application
    Filed: January 4, 2011
    Publication date: May 26, 2011
    Applicant: Georgia Tech Research Corporation
    Inventors: Stephane Pinel, Joy Laskar
  • Patent number: 7944293
    Abstract: Systems and methods for providing an adaptive bias circuit that may include a differential amplifier, low-pass filter, and common source amplifier or common emitter amplifier. The adaptive bias circuit may generate an adaptive bias output signal depending on input signal power level. As the input power level goes up, the adaptive bias circuit may increase the bias voltage or bias current of the adaptive bias output signal. A power amplifier (e.g., a differential amplifier) may be biased according to the adaptive bias output signal in order to reduce current consumption at low power operation levels.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: May 17, 2011
    Assignees: Samsung Electro-Mechanics Company, Ltd., Georgia Tech Research Corporation
    Inventors: Dong Ho Lee, Kyu Hwan An, Jeonghu Han, Chang-Ho Lee, Joy Laskar