Patents by Inventor Jung Yu

Jung Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240372004
    Abstract: A disclosed semiconductor device includes a substrate, a gate electrode formed on the substrate, a gate dielectric layer formed over the gate electrode, a source electrode located adjacent to a first side of the gate electrode, and a drain electrode located adjacent to a second side of the gate electrode. A gate dielectric formed from an etch-stop layer and/or high-k dielectric layer separates the source electrode from the gate electrode and substrate and separates the drain electrode from the gate electrode and the substrate. First and second oxide layers are formed over the gate dielectric and are located adjacent to the source electrode on the first side of the gate electrode and located adjacent to the drain electrode on the second side of the gate electrode. A semiconductor layer is formed over the first oxide layer, the second oxide layer, the source electrode, the drain electrode, and the gate dielectric.
    Type: Application
    Filed: July 15, 2024
    Publication date: November 7, 2024
    Inventors: Yong-Jie WU, Yen-Chung HO, Hui-Hsien WEI, Chia-Jung YU, Pin-Cheng HSU, Feng-Cheng YANG, Chung-Te LIN
  • Publication number: 20240359288
    Abstract: A method of using a polishing pad includes applying a slurry in a first region of the polishing pad. The method further includes spreading the slurry across the first region of the polishing pad at a first rate. The method further includes spreading the slurry across a second region at a second rate different from the first rate, wherein the second region is farther from a center of the polishing pad than the first region. The method further includes spreading the slurry across a third region at a third rate different from the second rate, wherein the second region is between the third region and the first region.
    Type: Application
    Filed: July 12, 2024
    Publication date: October 31, 2024
    Inventors: ChunHung CHEN, Jung-Yu LI, Sheng-Chen WANG, Shih-Sian HUANG
  • Publication number: 20240363723
    Abstract: Methods of manufacturing electronic devices are described. Embodiments of the present disclosure advantageously provide methods of manufacturing electronic devices that meet reduced thickness, reduced leakage, lower thermal budget, and Vt requirements (including multi-Vt), and have improved device performance and reliability. The method comprises forming a P-dipole stack and an N-dipole stack on a semiconductor substrate by: depositing an interfacial layer (e.g., silicon oxide (SiOx)) on the top surface of the channel; depositing a hafnium-containing layer comprising hafnium oxide (HfOx) and having a thickness of less than or equal to 5 ? on the interfacial layer; and depositing a dipole layer comprising lanthanum nitride (LaN) on the hafnium-containing layer.
    Type: Application
    Filed: April 28, 2023
    Publication date: October 31, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Srinivas Gandikota, Tengzhou Ma, Geetika Bajaj, Debaditya Chatterjee, Hsin-Jung Yu, Pei Hsuan Lin, Yixiong Yang
  • Publication number: 20240363762
    Abstract: A semiconductor device includes a first dielectric layer, a gate electrode embedded within the first dielectric layer, a layer stack including a gate dielectric layer, a channel layer including a semiconducting metal oxide material, and a second dielectric layer, and a source electrode and a drain electrode embedded in the second dielectric layer and contacting a respective portion of a top surface of the channel layer. A combination of the gate electrode, the gate dielectric layer, the channel layer, the source electrode, and the drain electrode forms a transistor. The total length of the periphery of a bottom surface of the channel layer that overlies the gate electrode is equal to the width of the gate electrode or twice the width of the gate electrode, and resputtering of the gate electrode material on sidewalls of the channel layer is minimized.
    Type: Application
    Filed: July 11, 2024
    Publication date: October 31, 2024
    Inventors: Yong-Jie Wu, Hui-Hsien Wei, Yen-Chung Ho, Mauricio Manfrini, Chia-Jung Yu, Chung-Te Lin, Pin-Cheng Hsu
  • Publication number: 20240360557
    Abstract: Methods for depositing metal films using a metal halide and metal organic precursors are described. The substrate is exposed to a first metal precursor and a second metal precursor to form the metal film. The exposures can be sequential or simultaneous. The metal films are relatively pure with a low carbon content.
    Type: Application
    Filed: April 25, 2023
    Publication date: October 31, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Srinivas Gandikota, Yixiong Yang, Tianyi Huang, Geetika Bajaj, Hsin-Jung Yu, Tengzhou Ma, Seshadri Ganguli, Tuerxun Ailihumaer, Yogesh Sharma, Debaditya Chatterjee
  • Patent number: 12128522
    Abstract: A method includes supplying slurry onto a polishing pad; holding a wafer against the polishing pad with a piezoelectric layer interposed vertically between a pressure unit and the wafer; exerting a force on the piezoelectric layer using the pressure unit to make the piezoelectric layer directly press the wafer; generating, using the piezoelectric layer, a first voltage corresponding to a first portion of the wafer and a second voltage corresponding to a second portion of the wafer; tuning the force exerted on the piezoelectric layer according to the first voltage and the second voltage; and polishing, using the polishing pad, the wafer.
    Type: Grant
    Filed: July 22, 2022
    Date of Patent: October 29, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shu-Bin Hsu, Ren-Guei Lin, Feng-Inn Wu, Sheng-Chen Wang, Jung-Yu Li
  • Patent number: 12133396
    Abstract: A semiconductor device, an integrated circuit, and a method of manufacturing the same are provided. The semiconductor device includes a substrate, a thin-film transistor (TFT) over the substrate, and a magnetoresistive random-access memory (MRAM) cell electrically coupled to the TFT. The TFT includes a gate electrode; an active layer disposed above the gate electrode; source/drain electrodes disposed above the gate electrode and separated by the active layer; and at least two dielectric layers disposed between the gate electrode and the source/drain electrodes.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: October 29, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chia-Jung Yu, Pin-Cheng Hsu
  • Patent number: 12125921
    Abstract: A semiconductor device includes a first dielectric layer, a gate electrode embedded within the first dielectric layer, a layer stack including a gate dielectric layer, a channel layer including a semiconducting metal oxide material, and a second dielectric layer, and a source electrode and a drain electrode embedded in the second dielectric layer and contacting a respective portion of a top surface of the channel layer. A combination of the gate electrode, the gate dielectric layer, the channel layer, the source electrode, and the drain electrode forms a transistor. The total length of the periphery of a bottom surface of the channel layer that overlies the gate electrode is equal to the width of the gate electrode or twice the width of the gate electrode, and resputtering of the gate electrode material on sidewalls of the channel layer is minimized.
    Type: Grant
    Filed: July 19, 2023
    Date of Patent: October 22, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Yong-Jie Wu, Hui-Hsien Wei, Yen-Chung Ho, Mauricio Manfrini, Chia-Jung Yu, Chung-Te Lin, Pin-Cheng Hsu
  • Publication number: 20240349514
    Abstract: A semiconductor device includes a semiconducting metal oxide fin located over a lower-level dielectric material layer, a gate dielectric layer located on a top surface and sidewalls of the semiconducting metal oxide fin, a gate electrode located on the gate dielectric layer and straddling the semiconducting metal oxide fin, an access-level dielectric material layer embedding the gate electrode and the semiconducting metal oxide fin, a memory cell embedded in a memory-level dielectric material layer and including a first electrode, a memory element, and a second electrode, and a bit line overlying the memory cell. The first electrode may be electrically connected to a drain region within the semiconducting metal oxide fin through a first electrically conductive path, and the second electrode is electrically connected to the bit line.
    Type: Application
    Filed: June 25, 2024
    Publication date: October 17, 2024
    Inventors: Yong-Jie WU, Yen-Chung HO, Hui-Hsien WEI, Chia-Jung YU, Pin-Cheng HSU, Mauricio MANFRINI, Chung-Te LIN
  • Patent number: 12114511
    Abstract: A semiconductor device, an integrated circuit, and a method of manufacturing the same are provided. The semiconductor device includes a substrate, a thin-film transistor (TFT) over the substrate, and a magnetoresistive random-access memory (MRAM) cell electrically coupled to the TFT. The TFT includes a gate electrode; a gate dielectric layer disposed over the gate electrode; source/drain electrodes disposed above the gate electrode; and an active layer disposed above the gate electrode. A protection layer is disposed between the TFT and the MRAM cell and electrically connects the MRAM cell to the TFT.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: October 8, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Hui-Hsien Wei, Yen-Chung Ho, Chia-Jung Yu, Yong-Jie Wu, Pin-Cheng Hsu
  • Patent number: 12114261
    Abstract: A method and an apparatus for allocating a flexible transmission slot in a wireless local area network (LAN) system are disclosed. A flexible transmission slot allocation method of an access point (AP) in a wireless local area network (WLAN) system according to an exemplary embodiment includes transmitting a beacon including a traffic indication map (TIM) bit to a station, receiving a power save poll (PS-Poll) from the station in a slot implicitly allocated by the TIM bit, and transmitting an acknowledgement (ACK) including transmission slot allocation information on downlink data to the station.
    Type: Grant
    Filed: July 6, 2023
    Date of Patent: October 8, 2024
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jae Seung Lee, Mln Ho Cheong, Hyoung Jin Kwon, Hee Jung Yu, Jae Woo Park, Sok Kyu Lee
  • Publication number: 20240327638
    Abstract: A hybrid crosslinked polymeric membrane and a process for fabricating the same are provided. Specifically, the hybrid crosslinked polymer membrane comprises a glassy polymer and a ladder-structured polysilsesquioxane and has a crosslinked structure. The hybrid crosslinked polymer membrane can have an excellent permeability of carbon dioxide by virtue of an increase in the free volume and enhanced plasticization resistance, chemical resistance, and durability.
    Type: Application
    Filed: June 13, 2024
    Publication date: October 3, 2024
    Inventors: Jong Suk LEE, Hyun Jung YU, Ju Ho SHIN, Heseong AN
  • Publication number: 20240332008
    Abstract: Methods of manufacturing and processing semiconductor devices (i.e., electronic devices) are described. Embodiments of the disclosure advantageously provide electronic devices which meet reduced thickness, lower thermal budget, and Vt requirements, and have improved device performance and reliability. The electronic devices described herein comprise a source region, a drain region, and a channel separating the source region and the drain region, an interfacial layer on a top surface of the channel, a high-? dielectric layer on the interfacial layer, a dipole layer on the high-? dielectric layer, and a capping layer on the dipole layer. In some embodiments, the dipole layer comprises a metal oxynitride (MON), such as aluminum oxynitride (AlON). In some embodiments, the methods comprise annealing the substrate to drive atoms from the dipole layer into one or more of the interfacial layer or the high-? dielectric layer.
    Type: Application
    Filed: March 27, 2023
    Publication date: October 3, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Geetika Bajaj, Tianyi Huang, Hsin-Jung Yu, Yixiong Yang, Srinivas Gandikota, Chi-Chou Lin, Pei Hsuan Lin
  • Publication number: 20240304405
    Abstract: A manipulator according to an embodiment may comprise: a housing; a rotary unit which is disposed in the housing and has a first rotating shaft; and a linear unit at least a part of which is disposed in the housing and which performs linear motion with respect to a breaker, wherein one side of the linear unit may be connected to the breaker and the other side of the linear unit may be connected to a part of the rotary unit.
    Type: Application
    Filed: November 29, 2022
    Publication date: September 12, 2024
    Inventors: Seong Taek HWANG, Ming Jung YU
  • Patent number: 12080676
    Abstract: A semiconductor package includes a first semiconductor chip that has a mount region and an overhang region, a substrate disposed on a bottom surface at the mount region of the first semiconductor chip, and a molding layer disposed on the substrate. The molding layer includes a first molding pattern disposed on a bottom surface at the overhang region of the first semiconductor chip and covering a sidewall of the substrate, and a second molding pattern on the first molding pattern and covering a sidewall of the first semiconductor chip.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: September 3, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Hae-Jung Yu
  • Patent number: 12074219
    Abstract: A disclosed semiconductor device includes a substrate, a gate electrode formed on the substrate, a gate dielectric layer formed over the gate electrode, a source electrode located adjacent to a first side of the gate electrode, and a drain electrode located adjacent to a second side of the gate electrode. A gate dielectric formed from an etch-stop layer and/or high-k dielectric layer separates the source electrode from the gate electrode and substrate and separates the drain electrode from the gate electrode and the substrate. First and second oxide layers are formed over the gate dielectric and are located adjacent to the source electrode on the first side of the gate electrode and located adjacent to the drain electrode on the second side of the gate electrode. A semiconductor layer is formed over the first oxide layer, the second oxide layer, the source electrode, the drain electrode, and the gate dielectric.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: August 27, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Yong-Jie Wu, Yen-Chung Ho, Hui-Hsien Wei, Chia-Jung Yu, Pin-Cheng Hsu, Feng-Cheng Yang, Chung-Te Lin
  • Patent number: 12070833
    Abstract: A method of using a polishing pad includes applying a slurry to a first location on the polishing pad. The method further includes rotating the polishing pad. The method further includes spreading the slurry across a first region of the polishing pad at a first rate, wherein the first region includes a plurality of first grooves. The method further includes spreading the slurry across a second region, surrounding the first region of the polishing pad at a second rate different from the first rate, wherein the second region includes a plurality of second grooves. The method further includes spreading the slurry across a third region, surrounding the second region of the polishing pad at a third rate less than the first rate and the second rate, wherein the third region includes a plurality of third grooves.
    Type: Grant
    Filed: June 26, 2023
    Date of Patent: August 27, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chunhung Chen, Jung-Yu Li, Sheng-Chen Wang, Shih-Sian Huang
  • Publication number: 20240282770
    Abstract: A memory device including bit lines, auxiliary lines, selectors, and memory cells is provided. The word lines are intersected with the bit lines. The auxiliary lines are disposed between the word lines and the of bit lines. The selectors are inserted between the bit lines and the auxiliary lines. The memory cells are inserted between the word lines and the auxiliary lines.
    Type: Application
    Filed: April 23, 2024
    Publication date: August 22, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Jung Yu, Pin-Cheng Hsu
  • Publication number: 20240276701
    Abstract: The present application provides a method for manufacturing a memory device having word lines with improved resistance, and a manufacturing method of the memory device. The method includes providing a semiconductor substrate defined with a peripheral region and an array region at least partially surrounded by the peripheral region; forming a first recess extending into the semiconductor substrate and disposed in the array region; and forming a word line disposed within the first recess. The formation of the word line includes disposing an insulating layer conformal to the first recess, and forming a conductive member surrounded by the insulating layer and having a second recess extending into the conductive member and toward the semiconductor substrate.
    Type: Application
    Filed: April 17, 2024
    Publication date: August 15, 2024
    Inventor: JUNG-YU WU
  • Publication number: 20240266414
    Abstract: Embodiments of the disclosure advantageously provide methods of manufacturing semiconductor devices having multi-Vt capability in the scaled space between nanosheets in advanced GAA nodes. One or more embodiments provide an integration scheme to advantageously reduce the gate resistance by combining n-/p-dipole and mid-gap metal with low resistance to achieve desired work function and low-resistance metal gate. In one or more embodiments, a mid-gap metal is used to fill nanosheets and act as a liner for subsequent fill by a low resistance metal. After dipole engineering, instead of filling the gate-all-around nanosheet with traditional n or p metal, in one or more embodiments, the nanosheet is advantageously filled with a single work function mid-gap metal to achieve n and p work function. If the work function was shifted in either P-dipole or N-dipole bandedge after dipole engineering, the mid-gap materials can also shift the bandedge the opposite way.
    Type: Application
    Filed: March 22, 2023
    Publication date: August 8, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Srinivas Gandikota, Yixiong Yang, Tengzhou Ma, Tianyi Huang, Geetika Bajaj, Hsin-Jung Yu, Seshadri Ganguli