Patents by Inventor Junya Maruyama

Junya Maruyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120007078
    Abstract: It is an object to provide a method of manufacturing a crystalline silicon device and a semiconductor device in which formation of cracks in a substrate, a base protective film, and a crystalline silicon film can be suppressed. First, a layer including a semiconductor film is formed over a substrate, and is heated. A thermal expansion coefficient of the substrate is 6×10?7/° C. to 38×10?7/° C., preferably 6×10?7/° C. to 31.8×10?7/° C. Next, the layer including the semiconductor film is irradiated with a laser beam to crystallize the semiconductor film so as to form a crystalline semiconductor film. Total stress of the layer including the semiconductor film is ?500 N/m to +50 N/m, preferably ?150 N/m to 0 N/m after the heating step.
    Type: Application
    Filed: September 22, 2011
    Publication date: January 12, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Akihisa SHIMOMURA, Hidekazu MIYAIRI, Fumito ISAKA, Yasuhiro JINBO, Junya MARUYAMA
  • Publication number: 20110312111
    Abstract: It is an object of the present invention to provide a peeling method that causes no damage to a layer to be peeled and to allow not only a layer to be peeled with a small surface area but also a layer to be peeled with a large surface area to be peeled entirely. Further, it is also an object of the present invention to bond a layer to be peeled to various base materials to provide a lighter semiconductor device and a manufacturing method thereof. Particularly, it is an object to bond various elements typified by a TFT, (a thin film diode, a photoelectric conversion element comprising a PIN junction of silicon, or a silicon resistance element) to a flexible film to provide a lighter semiconductor device and a manufacturing method thereof.
    Type: Application
    Filed: August 25, 2011
    Publication date: December 22, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Toru TAKAYAMA, Junya MARUYAMA, Yumiko OHNO
  • Patent number: 8067294
    Abstract: It is an object of the invention to provide a lightweight semiconductor device having a highly reliable sealing structure which can prevent ingress of impurities such as moisture that deteriorate element characteristics, and a method of manufacturing thereof. A protective film having superior gas barrier properties (which is a protective film that is likely to damage an element if the protective film is formed on the element directly) is previously formed on a heat-resistant substrate other than a substrate with the element formed thereon. The protective film is peeled off from the heat-resistant substrate, and transferred over the substrate with the element formed thereon so as to seal the element.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: November 29, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toru Takayama, Yuugo Goto, Yumiko Fukumoto, Junya Maruyama, Takuya Tsurume
  • Publication number: 20110284858
    Abstract: A semiconductor device having a semiconductor element (a thin film transistor, a thin film diode, a photoelectric conversion element of silicon PIN junction, or a silicon resistor element) which is light-weight, flexible (bendable), and thin as a whole is provided as well as a method of manufacturing the semiconductor device. In the present invention, the element is not formed on a plastic film. Instead, a flat board such as a substrate is used as a form, the space between the substrate (third substrate (17)) and a layer including the element (peeled layer (13)) is filled with coagulant (typically an adhesive) that serves as a second bonding member (16), and the substrate used as a form (third substrate (17)) is peeled off after the adhesive is coagulated to hold the layer including the element (peeled layer (13)) by the coagulated adhesive (second bonding member (16)) alone. In this way, the present invention achieves thinning of the film and reduction in weight.
    Type: Application
    Filed: August 8, 2011
    Publication date: November 24, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Junya Maruyama, Toru Takayama, Yuugo Goto
  • Patent number: 8058152
    Abstract: A method for separating an integrated circuit formed by a thin film having a novel structure or a method for transferring the integrated circuit to another substrate, that is, so-called transposing method, has not been proposed. According to the present invention, in the case that an integrated circuit having a thin film having a novel structure formed over a substrate via a release layer is separated, the release layer is removed in the state that the thin film integrated circuit is fixated, the thin film integrated circuit is transposed to a supporting substrate having an adhesion surface, and the thin film integrated circuit is transposed to another substrate having an adhesion surface with higher strength of adhesion than that of the supporting substrate.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: November 15, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takuya Tsurume, Junya Maruyama, Yoshitaka Dozen
  • Patent number: 8044411
    Abstract: The present invention provides a structure in which a pixel region 13 is surrounded by a first sealing material (having higher viscosity than a second sealing material) 16 including a spacer (filler, minute particles and/or the like) which maintains a gap between the two substrates, filled with a few drops of the transparent second sealing material 17a which is spread in the region; and sealed by using the first sealing material 16 and the second sealing material 17.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: October 25, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junya Maruyama, Toru Takayama, Yumiko Ohno
  • Patent number: 8044397
    Abstract: To realize a high-performance liquid crystal display device or light-emitting element using a plastic film. A CPU is formed over a first glass substrate and then, separated from the first substrate. A pixel portion having a light-emitting element is formed over a second glass substrate, and then, separated from the second substrate. The both are bonded to each other. Therefore, high integration can be achieved. Further, in this case, the separated layer including the CPU serves also as a sealing layer of the light-emitting element.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: October 25, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toru Takayama, Junya Maruyama, Yumiko Ohno
  • Patent number: 8044946
    Abstract: The present invention intends to realize a narrow frame of a system on panel. In addition to this, a system mounted on a panel is intended to make higher and more versatile in the functionality. In the invention, on a panel on which a pixel portion (including a liquid crystal element, a light-emitting element) and a driving circuit are formed, integrated circuits that have so far constituted an external circuit are laminated and formed. Specifically, of the pixel portion and the driving circuit on the panel, on a position that overlaps with the driving circuit, any one kind or a plurality of kinds of the integrated circuits is formed by laminating according to a transcription technique.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: October 25, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toru Takayama, Junya Maruyama, Yuugo Goto, Yumiko Ohno, Yasuyuki Arai, Noriko Shibata
  • Patent number: 8039782
    Abstract: In an optical sensor device employing an amorphous silicon photodiode, an external amplifier IC and the like are required due to low current capacity of the sensor element in order to improve the load driving capacity. It leads to increase in cost and mounting space of the optical sensor device. In addition, noise may easily superimpose since the photodiode and the amplifier IC are connected to each other over a printed circuit board. According to the invention, an amorphous silicon photodiode and an amplifier configured by a thin film transistor are formed integrally over a substrate so that the load driving capacity is improved while reducing cost and mounting space. Superimposing noise can be also reduced.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: October 18, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Jun Koyama, Takeshi Osada, Takanori Matsuzaki, Kazuo Nishi, Junya Maruyama
  • Patent number: 8040456
    Abstract: To sophisticate a portable electronic appliance without hindering reduction of the weight and the size, more specifically, to sophisticate a liquid crystal display apparatus installed in a portable electronic appliance without hindering the mechanical strength, a liquid crystal display apparatus includes a first plastic substrate, a light-emitting device which is disposed over the first plastic substrate, resin which covers the light-emitting device, an insulating film which is in contact with the resin, a semiconductor device which is in contact with the insulating film, a liquid crystal cell which is electrically connected to the semiconductor device, and a second plastic substrate, wherein the semiconductor device and the liquid crystal cell are disposed between the first plastic substrate and the second plastic substrate.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: October 18, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toru Takayama, Junya Maruyama, Yuugo Goto, Yumiko Ohno, Akio Endo, Yasuyuki Arai
  • Patent number: 8034724
    Abstract: It is an object to provide a method of manufacturing a crystalline silicon device and a semiconductor device in which formation of cracks in a substrate, a base protective film, and a crystalline silicon film can be suppressed. First, a layer including a semiconductor film is formed over a substrate, and is heated. A thermal expansion coefficient of the substrate is 6×10?7/° C. to 38×10?7/° C., preferably 6×10?7/° C. to 31.8×10?7/° C. Next, the layer including the semiconductor film is irradiated with a laser beam to crystallize the semiconductor film so as to form a crystalline semiconductor film. Total stress of the layer including the semiconductor film is ?500 N/m to +50 N/m, preferably ?150 N/m to 0 N/m after the heating step.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: October 11, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Hidekazu Miyairi, Fumito Isaka, Yasuhiro Jinbo, Junya Maruyama
  • Patent number: 8026152
    Abstract: It is an object to provide a semiconductor device integrating various elements without using a semiconductor substrate, and a method of manufacturing the same. According to the present invention, a layer to be separated including an inductor, a capacitor, a resistor element, a TFT element, an embedded wiring and the like, is formed over a substrate, separated from the substrate, and transferred onto a circuit board 100. An electrical conduction with a wiring pattern 114 provided in the circuit board 100 is made by a wire 112 or a solder 107, thereby forming a high frequency module or the like.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: September 27, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toru Takayama, Junya Maruyama, Yumiko Ohno, Yuugo Goto, Hideaki Kuwabara
  • Publication number: 20110223966
    Abstract: The present invention provides an ultrathin thin film integrated circuit and a thin film integrated circuit device including the thin film integrated circuit device. Accordingly, the design of a product is not spoilt while an integrated circuit formed from a silicon wafer, which is thick and produces irregularities on the surface of the product container. The thin film integrated circuit according to the present invention includes a semiconductor film as an active region (for example a channel region in a thin film transistor), unlike an integrated circuit formed from a conventional silicon wafer. The thin film integrated circuit according to the present invention is thin enough that the design is not spoilt even when a product such as a card or a container is equipped with the thin film integrated circuit.
    Type: Application
    Filed: May 25, 2011
    Publication date: September 15, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yasuyuki ARAI, Akira ISHIKAWA, Toru TAKAYAMA, Junya MARUYAMA, Yuugo GOTO, Yumiko OHNO, Yuko TACHIMURA
  • Patent number: 8013335
    Abstract: It is an object of the present invention to provide a semiconductor device capable of preventing deterioration due to penetration of moisture or oxygen, for example, a light-emitting apparatus having an organic light-emitting device that is formed over a plastic substrate, and a liquid crystal display apparatus using a plastic substrate. According to the present invention, devices formed on a glass substrate or a quartz substrate (a TFT, a light-emitting device having an organic compound, a liquid crystal device, a memory device, a thin-film diode, a pin-junction silicon photoelectric converter, a silicon resistance element, or the like) are separated from the substrate, and transferred to a plastic substrate having high thermal conductivity.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: September 6, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toru Takayama, Junya Maruyama, Yumiko Ohno
  • Patent number: 8012854
    Abstract: It is an object of the present invention to provide a peeling method that causes no damage to a layer to be peeled and to allow not only a layer to be peeled with a small surface area but also a layer to be peeled with a large surface area to be peeled entirely. Further, it is also an object of the present invention to bond a layer to be peeled to various base materials to provide a lighter semiconductor device and a manufacturing method thereof. Particularly, it is an object to bond various elements typified by a TFT, (a thin film diode, a photoelectric conversion element comprising a PIN junction of silicon, or a silicon resistance element) to a flexible film to provide a lighter semiconductor device and a manufacturing method thereof.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: September 6, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toru Takayama, Junya Maruyama, Yumiko Ohno
  • Publication number: 20110207251
    Abstract: It is provided a contacting method when a plurality of films to be peeled are laminating. Reduction of total layout area, miniaturization of a module, weight reduction, thinning, narrowing a frame of a display device, or the like can be realized by sequentially laminating a plurality of films to be peeled which are once separately formed over a plastic film or the like. Moreover, reliable contact having high degree of freedom is realized by forming each layer having a connection face of a conductive material and by patterning with the use of a photomask having the same pattern.
    Type: Application
    Filed: May 4, 2011
    Publication date: August 25, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Aya ANZAI, Junya MARUYAMA
  • Publication number: 20110201141
    Abstract: To sophisticate a portable electronic appliance without hindering reduction of the weight and the size, more specifically, to sophisticate a liquid crystal display apparatus installed in a portable electronic appliance without hindering the mechanical strength, a liquid crystal display apparatus includes a first plastic substrate, a light-emitting device which is disposed over the first plastic substrate, resin which covers the light-emitting device, an insulating film which is in contact with the resin, a semiconductor device which is in contact with the insulating film, a liquid crystal cell which is electrically connected to the semiconductor device, and a second plastic substrate, wherein the semiconductor device and the liquid crystal cell are disposed between the first plastic substrate and the second plastic substrate.
    Type: Application
    Filed: April 28, 2011
    Publication date: August 18, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Toru TAKAYAMA, Junya MARUYAMA, Yuugo GOTO, Yumiko OHNO, Akio ENDO, Yasuyuki ARAI
  • Patent number: 7994506
    Abstract: A semiconductor device having a semiconductor element (a thin film transistor, a thin film diode, a photoelectric conversion element of silicon PIN junction, or a silicon resistor element) which is light-weight, flexible (bendable), and thin as a whole is provided as well as a method of manufacturing the semiconductor device. In the present invention, the element is not formed on a plastic film. Instead, a flat board such as a substrate is used as a form, the space between the substrate (third substrate (17)) and a layer including the element (peeled layer (13)) is filled with coagulant (typically an adhesive) that serves as a second bonding member (16), and the substrate used as a form (third substrate (17)) is peeled off after the adhesive is coagulated to hold the layer including the element (peeled layer (13)) by the coagulated adhesive (second bonding member (16)) alone. In this way, the present invention achieves thinning of the film and reduction in weight.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: August 9, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junya Maruyama, Toru Takayama, Yuugo Goto
  • Publication number: 20110180797
    Abstract: It is an object of the present invention to provide a semiconductor device capable of preventing deterioration due to penetration of moisture or oxygen, for example, a light-emitting apparatus having an organic light-emitting device that is formed over a plastic substrate, and a liquid crystal display apparatus using a plastic substrate. According to the present invention, devices formed on a glass substrate or a quartz substrate (a TFT, a light-emitting device having an organic compound, a liquid crystal device, a memory device, a thin-film diode, a pin-junction silicon photoelectric converter, a silicon resistance element, or the like) are separated from the substrate, and transferred to a plastic substrate having high thermal conductivity.
    Type: Application
    Filed: January 21, 2011
    Publication date: July 28, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei Yamazaki, Toru Takayama, Junya Maruyama, Yumiko Ohno
  • Patent number: 7973313
    Abstract: The present invention provides an ultrathin thin film integrated circuit and a thin film integrated circuit device including the thin film integrated circuit device. Accordingly, the design of a product is not spoilt while an integrated circuit formed from a silicon wafer, which is thick and produces irregularities on the surface of the product container. The thin film integrated circuit according to the present invention includes a semiconductor film as an active region (for example a channel region in a thin film transistor), unlike an integrated circuit formed from a conventional silicon wafer. The thin film integrated circuit according to the present invention is thin enough that the design is not spoilt even when a product such as a card or a container is equipped with the thin film integrated circuit.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: July 5, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuyuki Arai, Akira Ishikawa, Toru Takayama, Junya Maruyama, Yuugo Goto, Yumiko Ohno, Yuko Tachimura