Patents by Inventor Kai FANG

Kai FANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10256735
    Abstract: A switched-mode power supply with near valley switching includes a quasi-resonant converter. The converter includes a switch element that is turned on not only at the valley, but also in a window range of ?tNVW close to the valley, where the voltage across the switch element is at its minimum. This advantageously reduces switching loss and maintains a balance between efficiency and frequency variation.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: April 9, 2019
    Assignee: FAIRCHILD SEMICONDUCTOR CORPORATION
    Inventors: Zhibo Tao, Jung-Sheng Chen, Li Lin, Kai-Fang Wei, Chih-Hsien Hsieh, Hangseok Choi, Yue-Hong Tang
  • Patent number: 10246556
    Abstract: A polyimide polymer is provided. The polyimide polymer includes a repeating unit represented by formula 1.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: April 2, 2019
    Assignee: TAIFLEX Scientific Co., Ltd.
    Inventors: Ching-Hung Huang, Kuang-Ting Hsueh, Chiu-Feng Chen, Yi-Kai Fang, Chun-Cheng Wan
  • Patent number: 10247451
    Abstract: In a cryogenic regenerator including a regenerator tube, a partitioning tube, whose tube wall is perforated by uniformly distributed through-holes, inside of which regenerator packing is provided, and having rib rings wrapped peripherally around its outer wall, is arranged coaxially inside the regenerator tube, with a buffer cavity between the regenerator-tube inner wall and the partitioning-tube outer wall.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: April 2, 2019
    Assignees: ZHEJIANG UNIVERSITY, SUMITOMO HEAVY INDUSTRIES, LTD.
    Inventors: Limin Qiu, Kai Fang, Xiao Jiang, Zhihua Gan, Zui Ri
  • Publication number: 20190097521
    Abstract: A synchronous rectifier (SR) controller includes a controller having an input adapted to be coupled to a drain of an SR transistor, and an output for providing a drive signal in response thereto, a gate driver having an input coupled to the output of the controller, and an output adapted to be coupled to a gate of the SR transistor for providing a gate signal thereto, a first transistor having a drain coupled to the gate terminal, a gate, and a source coupled to ground, and a protection circuit having an input coupled to the drain terminal, and an output coupled to the gate of the first transistor. The protection circuit is responsive to a voltage on the drain terminal exceeding a first voltage to provide a voltage on the gate of the first transistor greater than a turn-on voltage and less than an overvoltage of the first transistor.
    Type: Application
    Filed: May 8, 2018
    Publication date: March 28, 2019
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Zhibo TAO, Lei CHEN, Kai-Fang WEI
  • Patent number: 10211097
    Abstract: A semiconductor device includes a first metal wiring layer, an interlayer insulating layer formed over the first metal layer, a second metal wiring structure embedded in the interlayer dielectric layer and connected to the first metal wiring layer, and an etch-stop layer disposed between the first metal wiring and the first interlayer dielectric layer. The etch-stop layer includes one or more sub-layers. The etch-stop layer includes a first sub-layer made of an aluminum-based insulating material, hafnium oxide, zirconium oxide or titanium oxide.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: February 19, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Yen Huang, Kai-Fang Cheng, Chi-Lin Teng, Shao-Kuan Lee, Hai-Ching Chen
  • Publication number: 20190025514
    Abstract: An apparatus comprises a substrate having a plateau region and a trench region, a metal layer over the plateau region, a semiconductor component over the trench region, wherein a gap is between the plateau region and the semiconductor component, an adhesion promoter layer over the plateau region, the semiconductor component and the gap, a dielectric layer over the adhesion promoter layer and a bonding interface formed between the adhesion promoter layer and the dielectric layer, wherein the bonding interface comprises a chemical structure comprising a first dielectric material of the adhesion promoter layer and a second dielectric material of the dielectric layer.
    Type: Application
    Filed: September 25, 2018
    Publication date: January 24, 2019
    Inventors: Chun-Hao Tseng, Ying-Hao Kuo, Kai-Fang Cheng, Hai-Ching Chen, Tien-I Bao
  • Publication number: 20180371170
    Abstract: A polyimide polymer is provided. The polyimide polymer includes a repeating unit represented by formula 1.
    Type: Application
    Filed: August 16, 2017
    Publication date: December 27, 2018
    Applicant: TAIFLEX Scientific Co., Ltd.
    Inventors: Ching-Hung Huang, Kuang-Ting Hsueh, Chiu-Feng Chen, Yi-Kai Fang, Chun-Cheng Wan
  • Patent number: 10163797
    Abstract: A plurality of high-k metal gate (HKMG) structures is formed over a substrate. The (HKMG) structures are separated by a plurality of gaps. The HKMG structures each include a first dielectric layer at an upper surface of the HKMG structure. The gaps are filled with a first conductive material. A portion of the first conductive material is removed in each of the gaps through an etching-back process. A metal oxide layer is formed using a spin-on deposition process. The metal oxide layer is formed over the (HKMG) structures and over the first conductive material. A second dielectric layer is formed over the metal oxide layer. An opening is etched in the second dielectric layer. The opening is etched through the second dielectric layer and through the metal oxide layer. The opening is filled with a second conductive material.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Lin Teng, Jung-Hsun Tsai, Kai-Fang Cheng, Hsin-Yen Huang, Hai-Ching Chen, Tien-I Bao
  • Publication number: 20180350669
    Abstract: A semiconductor device includes a first metal wiring layer, an interlayer insulating layer formed over the first metal layer, a second metal wiring structure embedded in the interlayer dielectric layer and connected to the first metal wiring layer, and an etch-stop layer disposed between the first metal wiring and the first interlayer dielectric layer. The etch-stop layer includes one or more sub-layers. The etch-stop layer includes a first sub-layer made of an aluminum-based insulating material, hafnium oxide, zirconium oxide or titanium oxide.
    Type: Application
    Filed: July 30, 2018
    Publication date: December 6, 2018
    Inventors: Hsin-Yen HUANG, Kai-Fang CHENG, Chi-Lin TENG, Shao-Kuan LEE, Hai-Ching CHEN
  • Patent number: 10090245
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate. The semiconductor device structure includes a first conductive structure over the substrate. The semiconductor device structure includes a first dielectric layer over the substrate and the first conductive structure. The semiconductor device structure includes a second conductive structure over the first conductive structure and extending into the first dielectric layer. The second conductive structure is electrically connected to the first conductive structure. The semiconductor device structure includes a cover layer between the second conductive structure and the first dielectric layer. The cover layer surrounds the second conductive structure, the second conductive structure passes through the cover layer and is partially between the cover layer and the first conductive structure, and the cover layer includes a metal oxide.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: October 2, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kai-Fang Cheng, Chi-Lin Teng, Hai-Ching Chen, Hsin-Yen Huang, Tien-I Bao, Jung-Hsun Tsai
  • Patent number: 10082626
    Abstract: A method comprises forming a plateau region and a trench region over a substrate, wherein the trench region comprises a slope and a flat bottom, depositing a reflecting layer over the flat bottom and a portion of the slope, depositing a first adhesion promoter layer over the reflecting layer, applying a first curing process to the first adhesion promoter layer, wherein, after the first curing process finishes, the reflecting layer and the first adhesion promoter layer form a first bonding interface, depositing a bottom cladding layer deposited over the first adhesion promoter layer, applying a second curing process to the bottom cladding layer to form a second bonding interface layer, depositing a core layer over the bottom cladding layer and depositing a top cladding layer over the core layer.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: September 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Hao Tseng, Ying-Hao Kuo, Kai-Fang Cheng, Hai-Ching Chen, Tien-I Bao
  • Publication number: 20180253880
    Abstract: Methods, apparatuses, and computer program products for overlaying multisource media in VRAM are described.
    Type: Application
    Filed: May 4, 2018
    Publication date: September 6, 2018
    Applicant: Ubitus Inc.
    Inventors: Chung-Chou Yeh, Yu-Ju Tseng, Kai-Fang Cheng
  • Patent number: 9955572
    Abstract: A polyimide polymer represented by the following formula 1 is provided. In formula 1, Ar is Ar? is A is and 0<X<0.38.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: April 24, 2018
    Assignee: TAIFLEX Scientific Co., Ltd.
    Inventors: Yi-Kai Fang, Tsung-Tai Hung, Chiao-Pei Chen, Chiu-Feng Chen, Ching-Hung Huang
  • Publication number: 20180076132
    Abstract: The present disclosure provides a method that includes providing a substrate having a first dielectric material layer and first conductive features that are laterally separated from each other by segments of the first dielectric material layer; depositing a first etch stop layer on the first dielectric material layer and the first conductive features, thereby forming the first etch stop layer having oxygen-rich portions self-aligned with the segments of the first dielectric material layer and oxygen-poor portions self-aligned with the first conductive features; performing a selective removal process to selectively remove the oxygen-poor portions of the first etch stop layer; forming a second etch stop layer on the first conductive features and the oxygen-rich portions of the first etch stop layer; forming a second dielectric material layer on the second etch stop layer; and forming a conductive structure in the second dielectric material layer.
    Type: Application
    Filed: November 13, 2017
    Publication date: March 15, 2018
    Inventors: Jung-Hsun Tsai, Chi-Lin Teng, Kai-Fang Cheng, Hsin-Yen Huang, Hai-Ching Chen, Tien-I Bao, Chien-Hua Huang
  • Patent number: 9892946
    Abstract: A processing apparatus includes a spin coating chamber, an ultraviolet curing chamber, a transfer module and an enclosure. The transfer module is assigned with a plurality transfer destinations, in which two of the transfer destinations are respectively located within the spin coating chamber and the ultraviolet curing chamber. The transfer module, the spin coating chamber and the ultraviolet curing chamber are enclosed by the enclosure.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: February 13, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kai-Fang Cheng, Shao-Kuan Lee, Hai-Ching Chen
  • Publication number: 20180033653
    Abstract: A processing apparatus includes a spin coating chamber, an ultraviolet curing chamber, a transfer module and an enclosure. The transfer module is assigned with a plurality transfer destinations, in which two of the transfer destinations are respectively located within the spin coating chamber and the ultraviolet curing chamber. The transfer module, the spin coating chamber and the ultraviolet curing chamber are enclosed by the enclosure.
    Type: Application
    Filed: July 27, 2016
    Publication date: February 1, 2018
    Inventors: Kai-Fang Cheng, Shao-Kuan Lee, Hai-Ching Chen
  • Publication number: 20180033730
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate. The semiconductor device structure includes a first conductive structure over the substrate. The semiconductor device structure includes a first dielectric layer over the substrate and the first conductive structure. The semiconductor device structure includes a second conductive structure over the first conductive structure and extending into the first dielectric layer. The second conductive structure is electrically connected to the first conductive structure. The semiconductor device structure includes a cover layer between the second conductive structure and the first dielectric layer. The cover layer surrounds the second conductive structure, the second conductive structure passes through the cover layer and is partially between the cover layer and the first conductive structure, and the cover layer includes a metal oxide.
    Type: Application
    Filed: October 10, 2017
    Publication date: February 1, 2018
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kai-Fang CHENG, Chi-Lin TENG, Hai-Ching CHEN, Hsin-Yen HUANG, Tien-I BAO, Jung-Hsun TSAI
  • Patent number: 9818690
    Abstract: The present disclosure provides a method that includes providing a substrate having a first dielectric material layer and first conductive features that are laterally separated from each other by segments of the first dielectric material layer; depositing a first etch stop layer on the first dielectric material layer and the first conductive features, thereby forming the first etch stop layer having oxygen-rich portions self-aligned with the segments of the first dielectric material layer and oxygen-poor portions self-aligned with the first conductive features; performing a selective removal process to selectively remove the oxygen-poor portions of the first etch stop layer; forming a second etch stop layer on the first conductive features and the oxygen-rich portions of the first etch stop layer; forming a second dielectric material layer on the second etch stop layer; and forming a conductive structure in the second dielectric material layer.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: November 14, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jung-Hsun Tsai, Chi-Lin Teng, Kai-Fang Cheng, Hsin-Yen Huang, Hai-Ching Chen, Tien-I Bao, Chien-Hua Huang
  • Patent number: 9799603
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate. The semiconductor device structure includes a first conductive structure over the substrate. The semiconductor device structure includes a first dielectric layer over the substrate. The first dielectric layer has a first opening exposing the first conductive structure. The semiconductor device structure includes a cover layer covering a first inner wall of the first opening. The cover layer has a second opening exposing the first conductive structure. The cover layer includes a metal oxide. The semiconductor device structure includes a second conductive structure filled in the first opening and surrounded by the cover layer. The second conductive structure is electrically connected to the first conductive structure.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: October 24, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kai-Fang Cheng, Chi-Lin Teng, Hai-Ching Chen, Hsin-Yen Huang, Tien-I Bao, Jung-Hsun Tsai
  • Publication number: 20170256491
    Abstract: The present disclosure provides a method for forming an integrated circuit (IC) structure. The method comprises providing a substrate including a conductive feature; forming aluminum (Al)-containing dielectric layer on the conductive feature; forming a low-k dielectric layer on the Al-containing dielectric layer; and etching the low-k dielectric layer to form a contact trench aligned with the conductive feature. A bottom of the contact trench is on a surface of the Al-containing dielectric layer.
    Type: Application
    Filed: May 22, 2017
    Publication date: September 7, 2017
    Inventors: Hsin-Yen Huang, Kai-Fang Cheng, Chi-Lin Teng, Hai-Ching Chen, Tien-l Bao