Patents by Inventor Katsuhiko Hotta

Katsuhiko Hotta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070020829
    Abstract: For simplifying the dual-damascene formation steps of a multilevel Cu interconnect, a formation step of an antireflective film below a photoresist film is omitted. Described specifically, an interlayer insulating film is dry etched with a photoresist film formed thereover as a mask, and interconnect trenches are formed by terminating etching at the surface of a stopper film formed in the interlayer insulating film. The stopper film is made of an SiCN film having a low optical reflectance, thereby causing it to serve as an antireflective film when the photoresist film is exposed.
    Type: Application
    Filed: June 16, 2006
    Publication date: January 25, 2007
    Inventors: Katsuhiko Hotta, Kyoko Sasahara
  • Publication number: 20060204673
    Abstract: Provided is a technology capable of improving the reliability of a semiconductor device using a SiOC film as an interlayer film. In the invention, by forming an interlayer film from a SiOC film having a Si—CH3 bond/Si—O bond ratio less than 2.50% or having a strength ratio determined by the FT-IR of a Si—OH bond to a SiO—O bond exceeding 0.0007, a strength ratio of a SiH bond to a SiO—O bond at a wavelength of 2230 cm?1 exceeding 0.0050 and a strength ratio of a Si—H bond to a SiO—O bond at a wavelength of 2170 cm?1 exceeding 0.0067, the interlayer film has a relative dielectric constant of to 3 or less, and owing to suppression of lowering in hardness or elastic modulus, has improved mechanical strength.
    Type: Application
    Filed: March 14, 2006
    Publication date: September 14, 2006
    Inventors: Masami Takayasu, Katsuhiko Hotta
  • Patent number: 7074691
    Abstract: A method for manufacturing a semiconductor integrated circuit device includes the steps of forming an isolation trench in an isolation region of a semiconductor substrate, filling the isolation trench up to predetermined middle position in its depth direction with a first insulating film deposited by a coating method, filling a remaining depth portion of the isolation trench into which the first insulating film is filled with a second insulating film, then forming a plurality of patterns on the semiconductor substrate, filling a trench forming between the plurality of patterns up to predetermined middle position in a trench depth direction with a third insulating film deposited by a coating method, and filling a remaining portion of the trench into which the third insulating film is filled with a fourth insulating film that is more difficult to etch than the third insulating film.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: July 11, 2006
    Assignees: Hitachi, Ltd., Hitachi ULSI Systems C O., Ltd.
    Inventors: Hidenori Sato, Norio Suzuki, Akira Takamatsu, Hiroyuki Maruyama, Takeshi Saikawa, Katsuhiko Hotta, Hiroyuki Ichizoe
  • Publication number: 20060148205
    Abstract: Provided is a manufacturing step of an element isolation by forming an isolation trench in an element isolation region of a semiconductor substrate, forming an HDP film over the semiconductor substrate including the inside of the isolation trench, and then polishing the HDP film by CMP to remove the HDP film outside the isolation trench, wherein the HDP film is formed at a sputter etching/deposition ratio ranging from 0.12 to 0.22 to relatively decrease the height of the protrusions of the HDP film, and after polishing of the protrusions of the HDP film by an additive-containing ceria-based slurry, the remaining HDP film outside the isolation trench is removed successively by using the additive-containing ceria-based slurry diluted with deionized water fed onto the semiconductor substrate.
    Type: Application
    Filed: January 4, 2006
    Publication date: July 6, 2006
    Inventors: Yoshikazu Akiba, Hisaharu Sawai, Katsuhiko Hotta
  • Patent number: 7060589
    Abstract: A method for manufacturing a semiconductor integrated circuit device includes the steps of forming an isolation trench in an isolation region of a semiconductor substrate, filling the isolation trench up to predetermined middle position in its depth direction with a first insulating film deposited by a coating method, filling a remaining depth portion of the isolation trench into which the first insulating film is filled with a second insulating film, then forming a plurality of patterns on the semiconductor substrate, filling a trench forming between the plurality of patterns up to predetermined middle position in a trench depth direction with a third insulating film deposited by a coating method, and filling a remaining portion of the trench into which the third insulating film is filled with a fourth insulating film that is more difficult to etch than the third insulating film.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: June 13, 2006
    Assignees: Hitachi, Ltd., Hitachi Ulsi Systems Co., Ltd.
    Inventors: Hidenori Sato, Norio Suzuki, Akira Takamatsu, Hiroyuki Maruyama, Takeshi Saikawa, Katsuhiko Hotta, Hiroyuki Ichizoe
  • Publication number: 20060001169
    Abstract: As etch-stop films or Cu-diffusion barrier films used in insulation films constituting conductor layers of a stacked structure, films having smaller dielectric constant than silicon nitride films are used, and an insulation film at a lower-layer part of the stacked structure is made to have smaller dielectric constant than that at an upper-layer part thereof, and further this insulation film is a silicon oxide (SiO) film and has, in the interior thereof, nano-pores of from 0.05 nm or more to 4 nm or less in diameter as chief construction. This makes it possible to dramatically reduce effective dielectric constant while keeping the mechanical strength of the conductore layers themselves, and can materialize a highly reliable and high-performance semiconductor device having mitigated the wiring delay of signals which pass through wirings.
    Type: Application
    Filed: August 26, 2005
    Publication date: January 5, 2006
    Inventors: Jun Tanaka, Miharu Otani, Kiyoshi Ogata, Yasumichi Suzuki, Katsuhiko Hotta
  • Publication number: 20060001167
    Abstract: As etch-stop films or Cu-diffusion barrier films used in insulation films constituting conductor layers of a stacked structure, films having smaller dielectric constant than silicon nitride films are used, and an insulation film at a lower-layer part of the stacked structure is made to have smaller dielectric constant than that at an upper-layer part thereof, and further this insulation film is a silicon oxide (SiO) film and has, in the interior thereof, nano-pores of from 0.05 nm or more to 4 nm or less in diameter as chief construction. This makes it possible to dramatically reduce effective dielectric constant while keeping the mechanical strength of the conductore layers themselves, and can materialize a highly reliable and high-performance semiconductor device having mitigated the wiring delay of signals which pass through wirings.
    Type: Application
    Filed: August 26, 2005
    Publication date: January 5, 2006
    Inventors: Jun Tanaka, Miharu Otani, Kiyoshi Ogata, Yasumichi Suzuki, Katsuhiko Hotta
  • Patent number: 6967407
    Abstract: A semiconductor device capable of high speed operation with a substantially small interlayer capacitance is produced by steps of using an insulating film comprising an organic insulating film and an insulating film composed of an organometallic polymer material as an interlayer insulating film formed by coating, patterning the insulating film in a semi-thermosetting state, etching the organic insulating film as the lower layer by means of the organometallic polymer as a mask, using a plasma gas containing oxygen as the main component, and then conducting ultimate baking treatment of these insulating films.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: November 22, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Miharu Otani, Jun Tanaka, Katsuhiko Hotta, Yasumichi Suzuki, Takashi Inoue
  • Publication number: 20050239257
    Abstract: A method for manufacturing a semiconductor integrated circuit device includes the steps of forming an isolation trench in an isolation region of a semiconductor substrate, filling the isolation trench up to predetermined middle position in its depth direction with a first insulating film deposited by a coating method, filling a remaining depth portion of the isolation trench into which the first insulating film is filled with a second insulating film, then forming a plurality of patterns on the semiconductor substrate, filling a trench forming between the plurality of patterns up to predetermined middle position in a trench depth direction with a third insulating film deposited by a coating method, and filling a remaining portion of the trench into which the third insulating film is filled with a fourth insulating film that is more difficult to etch than the third insulating film.
    Type: Application
    Filed: June 10, 2005
    Publication date: October 27, 2005
    Inventors: Hidenori Sato, Norio Suzuki, Akira Takamatsu, Hiroyuki Maruyama, Takeshi Saikawa, Katsuhiko Hotta, Hiroyuki Ichizoe
  • Publication number: 20050237603
    Abstract: A method for manufacturing a semiconductor integrated circuit device includes the steps of forming an isolation trench in an isolation region of a semiconductor substrate, filling the isolation trench up to predetermined middle position in its depth direction with a first insulating film deposited by a coating method, filling a remaining depth portion of the isolation trench into which the first insulating film is filled with a second insulating film, then forming a plurality of patterns on the semiconductor substrate, filling a trench forming between the plurality of patterns up to predetermined middle position in a trench depth direction with a third insulating film deposited by a coating method, and filling a remaining portion of the trench into which the third insulating film is filled with a fourth insulating film that is more difficult to etch than the third insulating film.
    Type: Application
    Filed: June 10, 2005
    Publication date: October 27, 2005
    Inventors: Hidenori Sato, Norio Suzuki, Akira Takamatsu, Hiroyuki Maruyama, Takeshi Saikawa, Katsuhiko Hotta, Hiroyuki Ichizoe
  • Publication number: 20050148155
    Abstract: A method for manufacturing a semiconductor integrated circuit device includes the steps of forming an isolation trench in an isolation region of a semiconductor substrate, filling the isolation trench up to predetermined middle position in its depth direction with a first insulating film deposited by a coating method, filling a remaining depth portion of the isolation trench into which the first insulating film is filled with a second insulating film, then forming a plurality of patterns on the semiconductor substrate, filling a trench forming between the plurality of patterns up to predetermined middle position in a trench depth direction with a third insulating film deposited by a coating method, and filling a remaining portion of the trench into which the third insulating film is filled with a fourth insulating film that is more difficult to etch than the third insulating film.
    Type: Application
    Filed: February 11, 2005
    Publication date: July 7, 2005
    Inventors: Hidenori Sato, Norio Suzuki, Akira Takamatsu, Hiroyuki Maruyama, Takeshi Saikawa, Katsuhiko Hotta, Hiroyuki Ichizoe
  • Publication number: 20050093161
    Abstract: As etch-stop films or Cu-diffusion barrier films used in insulation films constituting conductor layers of a stacked structure, films having smaller dielectric constant than silicon nitride films are used, and an insulation film at a lower-layer part of the stacked structure is made to have smaller dielectric constant than that at an upper-layer part thereof, and further this insulation film is a silicon oxide (SiO) film and has, in the interior thereof, nano-pores of from 0.05 nm or more to 4 nm or less in diameter as chief construction. This makes it possible to dramatically reduce effective dielectric constant while keeping the mechanical strength of the conductore layers themselves, and can materialize a highly reliable and high-performance semiconductor device having mitigated the wiring delay of signals which pass through wirings.
    Type: Application
    Filed: December 1, 2004
    Publication date: May 5, 2005
    Inventors: Jun Tanaka, Miharu Otani, Kiyoshi Ogata, Yasumichi Suzuki, Katsuhiko Hotta
  • Patent number: 6838771
    Abstract: As etch-stop films or Cu-diffusion barrier films used in insulation films constituting conductor layers of a stacked structure, films having smaller dielectric constant than silicon nitride films are used, and an insulation film at a lower-layer part of the stacked structure is made to have smaller dielectric constant than that at an upper-layer part thereof, and further this insulation film is a silicon oxide (SiO) film and has in the interior thereof, nano-pores of from 0.05 nm or more to 4 nm or less in diameter as chief construction. This makes it possible to dramatically reduce effective dielectric constant while keeping the mechanical strength of the conductore layers themselves, and can materialize a highly reliable and high-performance semiconductor device having mitigated the wiring delay of signals which pass through wirings.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: January 4, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Jun Tanaka, Miharu Otani, Kiyoshi Ogata, Yasumichi Suzuki, Katsuhiko Hotta
  • Patent number: 6833331
    Abstract: An SOG film 16 obtained by heat-treating a polysilazan type SOG film at high temperature of about 800° C. is used as a planarized insulating film to be formed on the gate electrode (9; see FIGS. 31 and 32) of a MISFET (Qs, Qn, Qp) A polysilazan SOG film (57) not subjected to such a heat treatment is used as interlayer insulating film arranged among upper wiring layers (54, 55, 56, 62, 63).
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: December 21, 2004
    Assignees: Hitachi Ltd., Hitachi ULSI Systems Co., Ltd.
    Inventors: Masayoshi Saito, Katsuhiko Hotta, Masayoshi Hirasawa, Masayuki Kojima, Hiroyuki Uchiyama, Hiroyuki Maruyama, Takuya Fukuda
  • Publication number: 20040121571
    Abstract: An insulating portion of the respective wiring layers for a semiconductor device is constituted of insulating films. The one insulating film is made of a material whose conductivity is higher than that of the other insulating film made of an ordinary silicon oxide film and is provided in contact with the wiring. An electric charge accumulated in the wiring generated in the course of the manufacture of the semiconductor device is discharged through the one insulating film at a stage where a charge accumulation in the wiring is low. This permits the heat release value generated through the discharge can be suppressed low, and the short-circuiting failure between adjacent wirings can be suppressed or prevented.
    Type: Application
    Filed: December 11, 2003
    Publication date: June 24, 2004
    Inventors: Ken Uchikoshi, Naokatsu Suwanai, Atsushi Tachigami, Katsuhiko Hotta, Masashi Sahara, Kazuhiko Sato
  • Publication number: 20040106292
    Abstract: A method for manufacturing a semiconductor integrated circuit device includes the steps of forming an isolation trench in an isolation region of a semiconductor substrate, filling the isolation trench up to predetermined middle position in its depth direction with a first insulating film deposited by a coating method, filling a remaining depth portion of the isolation trench into which the first insulating film is filled with a second insulating film, then forming a plurality of patterns on the semiconductor substrate, filling a trench forming between the plurality of patterns up to predetermined middle position in a trench depth direction with a third insulating film deposited by a coating method, and filling a remaining portion of the trench into which the third insulating film is filled with a fourth insulating film that is more difficult to etch than the third insulating film.
    Type: Application
    Filed: November 26, 2003
    Publication date: June 3, 2004
    Inventors: Hidenori Sato, Norio Suzuki, Akira Takamatsu, Hiroyuki Maruyama, Takeshi Saikawa, Katsuhiko Hotta, Hiroyuki Ichizoe
  • Patent number: 6693008
    Abstract: In order to fill in an isolation trench formed on a semiconductor substrate, the isolation trench is filled up to a predetermined middle position with a coating film first, and then an insulating film formed by a CVD method is deposited thereon. Additionally, the insulating film is polished by a CMP method, for example, so as to be ground. Thus, the isolation trench is filled with stacked films of the coating film and the insulating film. Further, an electrode pattern and a dummy pattern are formed on the semiconductor substrate, and the trench formed between these patterns is filled up to a predetermined middle position in its depth direction with the coating film. Then, a remaining depth portion of the trench is filled with the insulating film formed by a CVD method.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: February 17, 2004
    Assignees: Renesas Technology Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Hidenori Sato, Norio Suzuki, Akira Takamatsu, Hiroyuki Maruyama, Takeshi Saikawa, Katsuhiko Hotta, Hiroyuki Ichizoe
  • Publication number: 20030213980
    Abstract: As etch-stop films or Cu-diffusion barrier films used in insulation films constituting conductor layers of a stacked structure, films having smaller dielectric constant than silicon nitride films are used, and an insulation film at a lower-layer part of the stacked structure is made to have smaller dielectric constant than that at an upper-layer part thereof, and further this insulation film is a silicon oxide (SiO) film and has in the interior thereof, nano-pores of from 0.05 nm or more to 4 nm or less in diameter as chief construction. This makes it possible to dramatically reduce effective dielectric constant while keeping the mechanical strength of the conductore layers themselves, and can materialize a highly reliable and high-performance semiconductor device having mitigated the wiring delay of signals which pass through wirings.
    Type: Application
    Filed: April 11, 2003
    Publication date: November 20, 2003
    Inventors: Jun Tanaka, Miharu Otani, Kiyoshi Ogata, Yasumichi Suzuki, Katsuhiko Hotta
  • Publication number: 20030193090
    Abstract: A semiconductor device capable of high speed operation with a substantially small interlayer capacitance is produced by steps of using an insulating film comprising an organic insulating film and an insulating film composed of an organometallic polymer material as an interlayer insulating film formed by coating, patterning the insulating film in a semi-thermosetting state, etching the organic insulating film as the lower layer by means of the organometallic polymer as a mask, using a plasma gas containing oxygen as the main component, and then conducting ultimate baking treatment of these insulating films.
    Type: Application
    Filed: May 27, 2003
    Publication date: October 16, 2003
    Inventors: Miharu Otani, Jun Tanaka, Katsuhiko Hotta, Yasumichi Suzuki, Takashi Inoue
  • Publication number: 20030077896
    Abstract: An SOG film 16 obtained by heat-treating a polysilazan type SOG film at high temperature of about 800° C. is used as a planarized insulating film to be formed on the gate electrode 9 of a MISFET (Qs, Qn, Qp) A polysilazan SOG film 57 not subjected to such a heat treatment is used as interlayer insulating film arranged among upper wiring layers (54, 55, 56, 63).
    Type: Application
    Filed: November 26, 2002
    Publication date: April 24, 2003
    Inventors: Masayoshi Saito, Katsuhiko Hotta, Masayoshi Hirasawa, Masayuki Kojima, Hiroyuki Uchiyama, Hiroyuki Maruyama, Takuya Fukuda