Patents by Inventor Kenneth P. Rodbell

Kenneth P. Rodbell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170332485
    Abstract: Tamper-proof electronic packages and fabrication methods are provided which include a glass enclosure enclosing, at least in part, at least one electronic component within a secure volume, and a tamper-respondent detector. The glass enclosure includes stressed glass with a compressively-stressed surface layer, and the tamper-respondent detector monitors, at least in part, the stressed glass to facilitate defining the secure volume. The stressed glass fragments with an attempted intrusion event through the stressed glass, and the tamper-respondent detector detects the fragmenting of the stressed glass. In certain embodiments, the stressed glass may be a machined glass enclosure that has undergone ion-exchange processing, and the compressively-stressed surface layer of the stressed glass may be compressively-stressed to ensure that the stressed glass fragments into glass particles of fragmentation size less than 1000 ?m with the intrusion event.
    Type: Application
    Filed: May 13, 2016
    Publication date: November 16, 2017
    Inventors: James A. BUSBY, Silvio DRAGONE, Michael J. FISHER, Michael A. GAYNES, David C. LONG, Kenneth P. RODBELL, William SANTIAGO-FERNANDEZ, Thomas WEISS
  • Publication number: 20170330844
    Abstract: Tamper-proof electronic packages and fabrication methods are provided which include a glass substrate. The glass substrate is stressed glass with a compressively-stressed surface layer. Further, one or more electronic components are secured to the glass substrate within a secure volume of the tamper-proof electronic package. In operation, the glass substrate is configured to fragment with an attempted intrusion event into the electronic package, and the fragmenting of the glass substrate also fragments the electronic component(s) secured to the glass substrate, thereby destroying the electronic component(s). In certain implementations, the glass substrate has undergone ion-exchange processing to provide the stressed glass.
    Type: Application
    Filed: May 13, 2016
    Publication date: November 16, 2017
    Inventors: James A. BUSBY, Silvio DRAGONE, Michael A. GAYNES, Kenneth P. RODBELL, William SANTIAGO-FERNANDEZ
  • Publication number: 20170263656
    Abstract: An integrated radiation sensor for detecting the presence of an environmental material and/or condition includes a sensing structure and first and second lateral bipolar junction transistors (BJTs) having opposite polarities. The first lateral BJT has a base that is electrically coupled to the sensing structure and is configured to generate an output signal indicative of a change in stored charge in the sensing structure. The second lateral BJT is configured to amplify the output signal of the first bipolar junction transistor. The first and second lateral BJTs, the sensing structure, and the substrate on which they are formed comprise a monolithic structure.
    Type: Application
    Filed: May 22, 2017
    Publication date: September 14, 2017
    Inventors: MICHAEL S. GORDON, TAK H. NING, KENNETH P. RODBELL, JENG-BANG YAU
  • Patent number: 9741672
    Abstract: An integrated circuit, a method of forming an integrated circuit, and a semiconductor are disclosed for preventing unauthorized use in radiation-hard applications. In one embodiment, the integrated circuit comprises a silicon-on-insulator (SOI) structure, a radiation insensitive sub-circuit, and a radiation sensitive sub-circuit. The SOI structure comprises a silicon substrate, a buried oxide layer, and an active silicon layer. The radiation insensitive sub-circuit is formed on the active layer, and includes a partially depleted transistor. The radiation sensitive sub-circuit is formed on the active layer, and includes a fully depleted transistor, to prevent operation of the radiation sensitive sub-circuit under specified radiation conditions.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: August 22, 2017
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Kenneth P. Rodbell
  • Patent number: 9738560
    Abstract: A method of manufacturing a glass substrate to control the fragmentation characteristics by etching and filling trenches in the glass substrate is disclosed. An etching pattern may be determined. The etching pattern may outline where trenches will be etched into a surface of the glass substrate. The etching pattern may be configured so that the glass substrate, when fractured, has a smaller fragmentation size than chemically strengthened glass that has not been etched. A mask may be created in accordance with the etching pattern, and the mask may be applied to a surface of the glass substrate. The surface of the glass substrate may then be etched to create trenches. A filler material may be deposited into the trenches.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: August 22, 2017
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Fuad E. Doany, Gregory M. Fritz, Michael S. Gordon, Qiang Huang, Eric P. Lewandowski, Xiao Hu Liu, Kenneth P. Rodbell, Thomas M. Shaw
  • Patent number: 9735077
    Abstract: A method of forming an electrical device is provided that includes forming microprocessor devices on a microprocessor die; forming memory devices on an memory device die; forming component devices on a component die; and forming a plurality of packing devices on a packaging die. Transferring a plurality of each of said microprocessor devices, memory devices, component devices and packaging components to a supporting substrate, wherein the packaging components electrically interconnect the memory devices, component devices and microprocessor devices in individualized groups. Sectioning the supporting substrate to provide said individualized groups of memory devices, component devices and microprocessor devices that are interconnected by a packaging component.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: August 15, 2017
    Assignee: International Business Machines Corporation
    Inventors: Qianwen Chen, Li-Wen Hung, Wanki Kim, John U. Knickerbocker, Kenneth P. Rodbell, Robert L. Wisnieff
  • Publication number: 20170229173
    Abstract: An arming switch structure and method of operation. The arming switch is integrated with a reactive material erasure device and phase change memory cell array and is coupled to a tamper detection device configured to trigger a signal for conduction to the reactive material erasure device that generates heat and induces a phase change in the phase change memory cell array. Prior to packaging, the memory chip is “armed” in a high-resistance state to prevent conduction of any signal to the reactive material erasure device. After the memory chip is packaged, the Reactive Material can be “disarmed” at a chosen time or condition by applying a bias to the arming switch activation layer, thereby heating and crystallizing the arming switch material, placing it in a low resistance state. In the disarmed state, the arming switch may conduct the trigger signal from tamper detection device to the reactive material erasure device.
    Type: Application
    Filed: December 30, 2015
    Publication date: August 10, 2017
    Inventors: Matthew J. BrightSky, Cyril Cabral, JR., Kenneth P. Rodbell
  • Publication number: 20170226633
    Abstract: A reactive material stack with tunable ignition temperatures is provided by inserting a barrier layer between layers of reactive materials. The barrier layer prevents the interdiffusion of the reactive materials, thus a reaction between reactive materials only occurs at an elevated ignition temperature when a certain energy threshold is reached.
    Type: Application
    Filed: February 8, 2016
    Publication date: August 10, 2017
    Inventors: Cyril Cabral, JR., Gregory M. Fritz, Kenneth P. Rodbell
  • Patent number: 9718728
    Abstract: In one aspect, a method for use in preparing a glass comprises: performing a first ion exchange process to replace at least a first ion in the glass with at least a second ion, the second ion being smaller than the first ion; and performing a second ion exchange process to replace at least the second ion in the glass with at least a third ion, the third ion being larger than the first ion. In another aspect, a glass is prepared at least in part by: performing a first ion exchange process to replace at least a first ion in the glass with at least a second ion, the second ion being smaller than the first ion; and performing a second ion exchange process to replace at least the second ion in the glass with at least a third ion, the third ion being larger than the first ion.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: August 1, 2017
    Assignee: International Business Machines Corporation
    Inventors: Qiang Huang, Kenneth P. Rodbell, Asli Sahin
  • Patent number: 9720101
    Abstract: A system, method and computer program product for determining whether a material meets an alpha particle emissivity specification that includes measuring a background alpha particle emissivity for the counter and measuring a combined alpha particle emissivity from the counter containing a sample of the material. The combined alpha particle emissivity includes the background alpha particle emissivity in combination with a sample alpha particle emissivity. The decision statistic is computed based on the observed data and compared to a threshold value. When the decision statistic is less than the threshold value, the material meets the alpha particle emissivity specification. The testing times are computed based on pre-specified criteria so as to meet the needs of both Producer and Consumer.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: August 1, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Michael S. Gordon, Kenneth P. Rodbell, Emmanuel Yashchin
  • Publication number: 20170204003
    Abstract: In one aspect, a method for use in preparing a glass comprises: performing a first ion exchange process to replace at least a first ion in the glass with at least a second ion, the second ion being smaller than the first ion; and performing a second ion exchange process to replace at least the second ion in the glass with at least a third ion, the third ion being larger than the first ion. In another aspect, a glass is prepared at least in part by: performing a first ion exchange process to replace at least a first ion in the glass with at least a second ion, the second ion being smaller than the first ion; and performing a second ion exchange process to replace at least the second ion in the glass with at least a third ion, the third ion being larger than the first ion.
    Type: Application
    Filed: January 20, 2016
    Publication date: July 20, 2017
    Inventors: Qiang Huang, Kenneth P. Rodbell, Asli Sahin
  • Publication number: 20170204004
    Abstract: In one aspect, a method for use in preparing a glass comprises: performing a first ion exchange process to replace at least a first ion in the glass with at least a second ion, the second ion being smaller than the first ion; and performing a second ion exchange process to replace at least the second ion in the glass with at least a third ion, the third ion being larger than the first ion. In another aspect, a glass is prepared at least in part by: performing a first ion exchange process to replace at least a first ion in the glass with at least a second ion, the second ion being smaller than the first ion; and performing a second ion exchange process to replace at least the second ion in the glass with at least a third ion, the third ion being larger than the first ion.
    Type: Application
    Filed: February 10, 2017
    Publication date: July 20, 2017
    Inventors: Qiang Huang, Kenneth P. Rodbell, Asli Sahin
  • Publication number: 20170204002
    Abstract: In one aspect, a method for use in preparing a glass includes performing an ion exchange process by treating the glass with a eutectic mixture including at least a first rubidium salt. In another aspect, a glass is prepared at least in part by performing an ion exchange process by treating the glass with a eutectic mixture including at least a first rubidium salt.
    Type: Application
    Filed: January 20, 2016
    Publication date: July 20, 2017
    Inventors: Qiang Huang, Kenneth P. Rodbell, Asli Sahin
  • Patent number: 9659979
    Abstract: An integrated radiation sensor for detecting the presence of an environmental material and/or condition includes a sensing structure and first and second lateral bipolar junction transistors (BJTs) having opposite polarities. The first lateral BJT has a base that is electrically coupled to the sensing structure and is configured to generate an output signal indicative of a change in stored charge in the sensing structure. The second lateral BJT is configured to amplify the output signal of the first bipolar junction transistor. The first and second lateral BJTs, the sensing structure, and the substrate on which they are formed comprise a monolithic structure.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: May 23, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael S. Gordon, Tak H. Ning, Kenneth P. Rodbell, Jeng-Bang Yau
  • Patent number: 9646125
    Abstract: A method is provided to convert commercial microprocessors to radiation-hardened processors and, more particularly, a method is provided to modify a commercial microprocessor for radiation hardened applications with minimal changes to the technology, design, device, and process base so as to facilitate a rapid transition for such radiation hardened applications. The method is implemented in a computing infrastructure and includes evaluating a probability that one or more components of an existing commercial design will be affected by a single event upset (SEU). The method further includes replacing the one or more components with a component immune to the SEU to create a final device.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: May 9, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: John A. Fifield, Mark C. Hakey, Jason D. Hibbeler, James S. Nakos, Tak H. Ning, Kenneth P. Rodbell, Ronald D. Rose, Henry H. K. Tang, Larry Wissel
  • Publication number: 20170110492
    Abstract: An integrated radiation sensor for detecting the presence of an environmental material and/or condition includes a sensing structure and first and second lateral bipolar junction transistors (BJTs) having opposite polarities. The first lateral BJT has a base that is electrically coupled to the sensing structure and is configured to generate an output signal indicative of a change in stored charge in the sensing structure. The second lateral BJT is configured to amplify the output signal of the first bipolar junction transistor. The first and second lateral BJTs, the sensing structure, and the substrate on which they are formed comprise a monolithic structure.
    Type: Application
    Filed: October 15, 2015
    Publication date: April 20, 2017
    Inventors: MICHAEL S. GORDON, TAK H. NING, KENNETH P. RODBELL, JENG-BANG YAU
  • Publication number: 20170092694
    Abstract: A reactive material erasure element comprising a reactive material is located between PCM cells and is in close proximity to the PCM cells. The reaction of the reactive material is trigger by a current applied by a bottom electrode which has a small contact area with the reactive material erasure element, thereby providing a high current density in the reactive material erasure element to ignite the reaction of the reactive material. Due to the close proximity of the PCM cells and the reactive material erasure element, the heat generated from the reaction of the reactive material can be effectively directed to the PCM cells to cause phase transformation of phase change material elements in the PCM cells, which in turn erases data stored in the PCM cells.
    Type: Application
    Filed: September 30, 2015
    Publication date: March 30, 2017
    Inventors: Matthew J. BrightSky, Cyril Cabral, JR., Kenneth P. Rodbell
  • Patent number: 9586857
    Abstract: A method of manufacturing a glass substrate to control the fragmentation characteristics by etching and filling trenches in the glass substrate is disclosed. An etching pattern may be determined. The etching pattern may outline where trenches will be etched into a surface of the glass substrate. The etching pattern may be configured so that the glass substrate, when fractured, has a smaller fragmentation size than chemically strengthened glass that has not been etched. A mask may be created in accordance with the etching pattern, and the mask may be applied to a surface of the glass substrate. The surface of the glass substrate may then be etched to create trenches. A filler material may be deposited into the trenches.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: March 7, 2017
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Fuad E. Doany, Gregory M. Fritz, Michael S. Gordon, Qiang Huang, Eric P. Lewandowski, Xiao Hu Liu, Kenneth P. Rodbell, Thomas M. Shaw
  • Patent number: 9484403
    Abstract: A semiconductor-on-insulator (SOI) structure that includes a cap layer composed of a boron-rich compound or doped boron nitride located between a top semiconductor layer and a buried insulator layer is provided. The cap layer forms a conductive path between the top semiconductor layer and the buried insulator layer in the SOI structure to dissipate total ionizing dose (TID) accumulated charges, thus advantageously mitigating TID effects in fully depleted SOI transistors.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: November 1, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alfred Grill, Deborah A. Neumayer, Kenneth P. Rodbell
  • Publication number: 20160315056
    Abstract: An integrated circuit, a method of forming an integrated circuit, and a semiconductor are disclosed for preventing unauthorized use in radiation-hard applications. In one embodiment, the integrated circuit comprises a silicon-on-insulator (SOI) structure, a radiation insensitive sub-circuit, and a radiation sensitive sub-circuit. The SOI structure comprises a silicon substrate, a buried oxide layer, and an active silicon layer. The radiation insensitive sub-circuit is formed on the active layer, and includes a partially depleted transistor. The radiation sensitive sub-circuit is formed on the active layer, and includes a fully depleted transistor, to prevent operation of the radiation sensitive sub-circuit under specified radiation conditions.
    Type: Application
    Filed: July 6, 2016
    Publication date: October 27, 2016
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Kenneth P. Rodbell