Patents by Inventor Koichiro Ishibashi

Koichiro Ishibashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110162519
    Abstract: A linear actuator includes a guide block constituting a guide mechanism. In the guide block, a pair of installation grooves are formed in a lower surface facing toward a cylinder main body. Ball circulation members having therein ball circulation holes are installed respectively in the installation grooves. Additionally, ball circulation passages through which balls circulate are provided. The ball circulation passages are made up from roll-reversing sections disposed on opposite ends of the ball circulation members, the ball circulation holes, second ball guide grooves formed in both side surfaces of the guide block, and first ball guide grooves of the slide table.
    Type: Application
    Filed: June 11, 2010
    Publication date: July 7, 2011
    Applicant: SMC Kabushiki Kaisha
    Inventors: Koichiro ISHIBASHI, Seiji Takanashi, Motohiro Sato, Jiro Mandokoro, Koji Hara, Toshio Sato
  • Patent number: 7964484
    Abstract: The gate tunnel leakage current is increased in the up-to-date process, so that it is necessary to reduce the gate tunnel leakage current in the LSI which is driven by a battery for use in a cellular phone and which needs to be in a standby mode at a low leakage current. In a semiconductor integrated circuit device, the ground source electrode lines of logic and memory circuits are kept at a ground potential in an active mode, and are kept at a voltage higher than the ground potential in an unselected standby mode. The gate tunnel leakage current can be reduced without destroying data.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: June 21, 2011
    Assignees: Renesas Electronics Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Kenichi Osada, Koichiro Ishibashi, Yoshikazu Saitoh, Akio Nishida, Masaru Nakamichi, Naoki Kitai
  • Patent number: 7961545
    Abstract: A logic circuit in a system LSI is provided with a power switch so as to cut off the switch at the time of standby, reducing leakage current. At the same time, an SRAM circuit of the system LSI controls a substrate bias to reduce leakage current.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: June 14, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Masanao Yamaoka, Koichiro Ishibashi, Shigezumi Matsui, Kenichi Osada
  • Patent number: 7958379
    Abstract: The feature of the present invention consists in: a processor main circuit for executing program instruction strings on a processor chip; a substrate bias switching unit for switching voltages of substrate biases applied to a substrate of the processor main circuit; and an operation mode control unit for controlling, in response to the execution of an instruction to proceed to a stand-by mode in the processor main circuit, the substrate bias switching unit in such a way that the biases are switched over to voltages for the stand-by mode, and for controlling, in response to an interruption of the stand-by release from the outside, the substrate bias switching unit in such a way that the biases are switched over to voltages for a normal mode, and also for releasing, after the bias voltages switched thereto have been stabilized, the stand-by of the processor main circuit to restart the operation.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: June 7, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Yonetaro Totsuka, Koichiro Ishibashi, Hiroyuki Mizuno, Osamu Nishii, Kunio Uchiyama, Takanori Shimura, Asako Sekine, Yoichi Katsuki, Susumu Narita
  • Publication number: 20100301422
    Abstract: Prior known static random access memory (SRAM) cells required that a diffusion layer be bent into a key-like shape in order to make electrical contact with a substrate with a P-type well region formed therein, which would result in a decrease in asymmetry leading to occurrence of a problem as to the difficulty in micro-patterning. To avoid this problem, the P-type well region in which an inverter making up an SRAM cell is formed is subdivided into two portions, which are disposed on the opposite sides of an N-type well region NW1 and are formed so that a diffusion layer forming a transistor has no curvature while causing the layout direction to run in a direction parallel to well boundary lines and bit lines. At intermediate locations of an array, regions for use in supply power to the substrate are formed in parallel to word lines in such a manner that one region is provided per group of thirty two memory cell rows or sixty four cell rows.
    Type: Application
    Filed: June 23, 2010
    Publication date: December 2, 2010
    Inventors: Kenichi Osada, Masataka Minami, Shuji Ikeda, Koichiro Ishibashi
  • Patent number: 7781846
    Abstract: Prior known static random access memory (SRAM) cells are required that a diffusion layer be bent into a key-like shape in order to make electrical contact with a substrate with a P-type well region formed therein, which would result in a decrease in asymmetry leading to occurrence of a problem as to the difficulty in micro-patterning. To avoid this problem, the P-type well region in which an inverter making up an SRAM cell is formed is subdivided into two portions, which are disposed on the opposite sides of an N-type well region NW1 and are formed so that a diffusion layer forming a transistor has no curvature while causing the layout direction to run in a direction parallel to well boundary lines and bit lines. At intermediate locations of an array, regions for use in supplying power to the substrate are formed in parallel to word lines in such a manner that one regions is provided per group of thirty two memory cell rows or sixty four cell rows.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: August 24, 2010
    Assignee: Renesas Technology Corporation
    Inventors: Kenichi Osada, Masataka Minami, Shuji Ikeda, Koichiro Ishibashi
  • Publication number: 20100165706
    Abstract: A static memory cell, composed of cross-coupled MOS transistors having a relatively high threshold voltage, is equipped with MOS transistors for controlling the power supply line voltage of the memory cell. To permit the voltage difference between two data storage nodes in the inactivated memory cell to exceed the voltage difference between the two nodes when write data is applied from a data line pair DL and /DL to the two nodes in the activated memory cell, the power supply line voltage control transistors are turned on to apply a high voltage VCH to the power supply lines after the word line voltage is turned off. The data holding voltage in the memory cell can be activated to a high voltage independent of the data line voltage, and the data holding voltage can be dynamically set so that read and write operations can be performed at high speed with low power consumption.
    Type: Application
    Filed: March 11, 2010
    Publication date: July 1, 2010
    Applicant: RENESAS TECHNOLOGY CORP.
    Inventors: Kiyoo Itoh, Koichiro Ishibashi
  • Patent number: 7737509
    Abstract: In an integrated circuit device, there are various optimum gate lengths, thickness of gate oxide films, and threshold voltages according to the characteristics of circuits. In a semiconductor integrated circuit device in which the circuits are integrated on the same substrate, the manufacturing process is complicated in order to set the circuits to the optimum values. As a result, in association with deterioration in the yield and increase in the number of manufacturing days, the manufacturing cost increases. In order to solve the problems, according to the invention, transistors of high and low thresholds are used in a logic circuit, a memory cell uses a transistor of the same high threshold voltage and a low threshold voltage transistor, and an input/output circuit uses a transistor having the same high threshold voltage and the same concentration in a channel, and a thicker gate oxide film.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: June 15, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Koichiro Ishibashi, Kenichi Osada
  • Patent number: 7710764
    Abstract: A semiconductor integrated circuit with memory redundancy circuit to address the problems of increased area, power consumption and access time which is caused by using an ECC circuit for error correction. The circuit includes: a plurality of memory mats; a local bus, parallel to word lines, which transfers read data and write data from memory cells; a global bus for writing, parallel to data lines, which transfers write data from an input pad IO; a global bus for reading, parallel to data lines, which transfers read data to an output pad IO; and at least one error correction circuit located at an intersection of the global buses and the local bus. Reading and writing may each be completed in a single cycle, and during a write operation, data which is different from data previously read is written. By this configuration, an increase in area and power consumption can be avoided and errors such as soft errors can be corrected.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: May 4, 2010
    Assignees: Renesas Technology Corp., Hitachi ULSI Systems Co., Ltd.
    Inventors: Kenichi Osada, Koichiro Ishibashi, Yoshikazu Saitou, Masashige Harada, Takehiko Kijima
  • Patent number: 7706205
    Abstract: A static memory cell, composed of cross-coupled MOS transistors having a relatively high threshold voltage, is equipped with MOS transistors for controlling the power supply line voltage of the memory cell. To permit the voltage difference between two data storage nodes in the inactivated memory cell to exceed the voltage difference between the two nodes when write data is applied from a data line pair DL and /DL to the two nodes in the activated memory cell, the power supply line voltage control transistors are turned on to apply a high voltage VCH to the power supply lines after the word line voltage is turned off. The data holding voltage in the memory cell can be activated to a high voltage independent of the data line voltage, and the data holding voltage can be dynamically set so that read and write operations can be performed at high speed with low power consumption.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: April 27, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Kiyoo Itoh, Koichiro Ishibashi
  • Publication number: 20100090282
    Abstract: The semiconductor integrated circuit has so-called SOI type first MOS transistors (MNtk, MPtk) and second MOS transistors (MNtn, MPtn). The first MOS transistors have a gate isolation film thicker than that the second MOS transistors have. The first and second MOS transistors constitute a power-supply-interruptible circuit (6) and a power-supply-uninterrupted circuit (7). The power-supply-interruptible circuit has the first MOS transistors each constituting a power switch (10) between a source line (VDD) and a ground line (VSS), and the second MOS transistors connected in series with the power switch. A gate control signal for the first MOS transistors each constituting a power switch is made larger in amplitude than that for the second MOS transistors. This enables power-source cutoff control with a high degree of flexibility commensurate with the device isolation structure, which an SOI type semiconductor integrated circuit has originally.
    Type: Application
    Filed: December 17, 2009
    Publication date: April 15, 2010
    Inventors: OSAMU OZAWA, Toshio Sasaki, Ryo Mori, Takashi Kuraishi, Yoshihiko Yasu, Koichiro Ishibashi
  • Publication number: 20100080046
    Abstract: A logic circuit in a system LSI is provided with a power switch so as to cut off the switch at the time of standby, reducing leakage current. At the same time, an SRAM circuit of the system LSI controls a substrate bias to reduce leakage current.
    Type: Application
    Filed: December 3, 2009
    Publication date: April 1, 2010
    Inventors: MASANAO YAMAOKA, Koichiro Ishibashi, Shigezumi Matsui, Kenichi Osada
  • Patent number: 7652333
    Abstract: The semiconductor integrated circuit has so-called SOI type first MOS transistors (MNtk, MPtk) and second MOS transistors (MNtn, MPtn). The first MOS transistors have a gate isolation film thicker than that the second MOS transistors have. The first and second MOS transistors constitute a power-supply-interruptible circuit (6) and a power-supply-uninterrupted circuit (7). The power-supply-interruptible circuit has the first MOS transistors each constituting a power switch (10) between a source line (VDD) and a ground line (VSS), and the second MOS transistors connected in series with the power switch. A gate control signal for the first MOS transistors each constituting a power switch is made larger in amplitude than that for the second MOS transistors. This enables power-source cutoff control with a high degree of flexibility commensurate with the device isolation structure, which an SOI type semiconductor integrated circuit has originally.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: January 26, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Osamu Ozawa, Toshio Sasaki, Ryo Mori, Takashi Kuraishi, Yoshihiko Yasu, Koichiro Ishibashi
  • Patent number: 7646662
    Abstract: A logic circuit in a system LSI is provided with a power switch so as to cut off the switch at the time of standby, reducing leakage current. At the same time, an SRAM circuit of the system LSI controls a substrate bias to reduce leakage current.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: January 12, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Masanao Yamaoka, Koichiro Ishibashi, Shigezumi Matsui, Kenichi Osada
  • Publication number: 20100005324
    Abstract: The feature of the present invention consists in: a processor main circuit for executing program instruction strings on a processor chip; a substrate bias switching unit for switching voltages of substrate biases applied to a substrate of the processor main circuit; and an operation mode control unit for controlling, in response to the execution of an instruction to proceed to a stand-by mode in the processor main circuit, the substrate bias switching unit in such a way that the biases are switched over to voltages for the stand-by mode, and for controlling, in response to an interruption of the stand-by release from the outside, the substrate bias switching unit in such a way that the biases are switched over to voltages for a normal mode, and also for releasing, after the bias voltages switched thereto have been stabilized, the stand-by of the processor main circuit to restart the operation.
    Type: Application
    Filed: December 30, 2008
    Publication date: January 7, 2010
    Inventors: Yonetaro TOTSUKA, Koichiro Ishibashi, Hiroyuki Mizuno, Osamu Nishii, Kunio Uchiyama, Takanori Shimura, Asako Sekine, Yoichi Katsuki, Susumu Narita
  • Patent number: 7612417
    Abstract: Prior known static random access memory (SRAM) cells are required that a diffusion layer be bent into a key-like shape in order to make electrical contact with a substrate with a P-type well region formed therein, which would result in a decrease in asymmetry leading to occurrence of a problem as to the difficulty in micro-patterning. To avoid this problem, the P-type well region in which an inverter making up an SRAM cell is formed is subdivided into two portions, which are disposed on the opposite sides of an N-type well region NW1 and are formed so that a diffusion layer forming a transistor has no curvature while causing the layout direction to run in a direction parallel to well boundary lines and bit lines. At intermediate locations of an array, regions for use in supplying power to the substrate are formed in parallel to word lines in such a manner that one regions is provided per group of thirty two memory cell rows or sixty four cell rows.
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: November 3, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Kenichi Osada, Masataka Minami, Shuji Ikeda, Koichiro Ishibashi
  • Publication number: 20090269899
    Abstract: The gate tunnel leakage current is increased in the up-to-date process, so that it is necessary to reduce the gate tunnel leakage current in the LSI which is driven by a battery for use in a cellular phone and which needs to be in a standby mode at a low leakage current. In a semiconductor integrated circuit device, the ground source electrode lines of logic and memory circuits are kept at a ground potential in an active mode, and are kept at a voltage higher than the ground potential in an unselected standby mode. The gate tunnel leakage current can be reduced without destroying data.
    Type: Application
    Filed: June 25, 2009
    Publication date: October 29, 2009
    Inventors: Kenichi OSADA, Koichiro ISHIBASHI, Yoshikazu SAITOH, Akio NISHIDA, Masaru NAKAMICHI, Naoki KITAI
  • Patent number: 7598796
    Abstract: In order to provide a semiconductor IC unit such as a microprocessor, etc., which satisfies both fast operation and lower power consumption properties with its high quality kept, the semiconductor IC unit of the present invention is composed so as to include a main circuit (LOG) provided with transistors, which is formed on a semiconductor substrate, and a substrate bias controlling circuit (VBC) used for controlling a voltage to be applied to the substrate, and the main circuit includes switching transistors (MN1 and MP1) used for controlling a voltage to be applied to the substrate and control signals output from the substrate bias controlling circuit is entered to the gate of each of the switching transistors and the control signal is returned to the substrate bias controlling circuit.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: October 6, 2009
    Assignee: Renesas Technology Corporation
    Inventors: Hiroyuki Mizuno, Koichiro Ishibashi, Takanori Shimura, Toshihiro Hattori
  • Patent number: 7589566
    Abstract: A CMOS LSI includes an inverter including first and second MOS transistors, a relatively long metal interconnection connected to an input node of the inverter, first and second diodes releasing charges born by the metal interconnection during a plasma process to first and second wells, and first and second MOS transistors maintaining a voltage between the first and second wells at a level not higher than a prescribed voltage. Therefore, even when an antenna ratio is high, a gate oxide film in the first and second MOS transistors is not damaged during the plasma process.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: September 15, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Shigeki Ohbayashi, Hiroaki Suzuki, Koichiro Ishibashi, Hiroshi Makino
  • Patent number: 7589993
    Abstract: A memory using an SRAM memory cell intended for low-voltage operation is designed to decrease the threshold value of MOS transistors constituting the memory cell without substantial decrease in the static noise margin, which is the operational margin of the memory cell. To this end, a voltage Vdd? higher than a power supply voltage Vdd of a power supply line for peripheral circuits is supplied from a power supply line for memory cells as a power supply voltage for memory cells. Since the conductance of driver MOS transistors is in-creased, the threshold voltage of the MOS transistors within the memory cells can be reduced without reducing the static noise margin. Further the ratio of width between the driver MOS transistor and a transfer MOS transistor can be set to 1, thereby allowing a reduction in the memory cell area.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: September 15, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Masanao Yamaoka, Kenichi Osada, Koichiro Ishibashi