Patents by Inventor Lang WANG

Lang WANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210125881
    Abstract: Various embodiments provide a thickness sensor and method for measuring a thickness of discrete conductive features, such as conductive lines and plugs. In one embodiment, the thickness sensor generates an Eddy current in a plurality of discrete conductive features, and measures the generated Eddy current generated in the discrete conductive features. The thickness sensor has a small sensor spot size, and amplifies peaks and valleys of the measured Eddy current. The thickness sensor determines a thickness of the discrete conductive features based on a difference between a minimum amplitude value and a maximum amplitude value of the measured Eddy current.
    Type: Application
    Filed: January 6, 2021
    Publication date: April 29, 2021
    Inventors: CHIH HUNG CHEN, KEI-WEI CHEN, YING-LANG WANG
  • Patent number: 10988456
    Abstract: An o-aminoheteroaryl alkynyl-containing compound has a structure represented by formula (I), and the compound of formula (I) has advantages of a high FGFR and RET double target inhibitory activity and a relatively low KDR activity, and the compound of formula (I) exhibits a strong inhibitory activity in a human lung cancer cell line NCI-H1581 and a gastric cancer cell line SNU16 as well as an RET-dependent sensitive cell line BaF3-CCDC6-Ret and a mutant thereof. Pharmacokinetic data shows that the o-aminoheteroaryl alkynyl-containing compound has druggability, and exhibits significant relevant inhibition of the growth of related tumors in a long-term animal model of drug efficacy and results in favorable animal condition at effective doses.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: April 27, 2021
    Assignee: SHANGHAI INSTITUTE OF MATERIA MEDICA, CHINESE ACADEMY OF SCIENCES
    Inventors: Youhong Hu, Meiyu Geng, Wenming Ren, Jian Ding, Xiaocong Guan, Jing Ai, Lang Wang, Xia Peng, Yang Liu, Yang Dai, Limin Zeng
  • Publication number: 20210083048
    Abstract: A structure of a semiconductor device includes a substrate, an isolation structure, and a liner layer. The isolation structure is embedded in the substrate. The isolation structure has a bottom surface and a sidewall. The liner layer is between the substrate and the isolation. A first portion of the liner layer in contact with the sidewall of the isolation structure has a nitrogen concentration lower than a second portion of the liner layer in contact with the bottom surface of the isolation structure.
    Type: Application
    Filed: November 30, 2020
    Publication date: March 18, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jia-Ming LIN, Shiu-Ko JANGJIAN, Chun-Che LIN, Ying-Lang WANG, Wei-Ken LIN, Chuan-Pu LIU
  • Patent number: 10916481
    Abstract: Various embodiments provide a thickness sensor and method for measuring a thickness of discrete conductive features, such as conductive lines and plugs. In one embodiment, the thickness sensor generates an Eddy current in a plurality of discrete conductive features, and measures the generated Eddy current generated in the discrete conductive features. The thickness sensor has a small sensor spot size, and amplifies peaks and valleys of the measured Eddy current. The thickness sensor determines a thickness of the discrete conductive features based on a difference between a minimum amplitude value and a maximum amplitude value of the measured Eddy current.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: February 9, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih Hung Chen, Kei-Wei Chen, Ying-Lang Wang
  • Publication number: 20210036129
    Abstract: In an embodiment, a method includes: performing a self-limiting process to modify a top surface of a wafer; after the self-limiting process completes, removing the modified top surface from the wafer; and repeating the performing the self-limiting process and the removing the modified top surface from the wafer until a thickness of the wafer is decreased to a predetermined thickness.
    Type: Application
    Filed: October 12, 2020
    Publication date: February 4, 2021
    Inventors: Chih Hung Chen, Kei-Wei Chen, Ying-Lang Wang
  • Publication number: 20210009233
    Abstract: The present disclosure provides an integrated flywheel with shared cylinders and a manufacturing method therefor, comprising gear rings and support portions comprising a plurality of bridge portions with a spoke and a cylinder. Between adjacent bridge portions, the first spoke overlaps one end of a cylinder on a next-stage support portion to form a first overlap joint, one end of the first cylinder overlaps an inner side of the first spoke, and the other end of the first cylinder overlaps and is fixed with an outer side of the second spoke to form a second overlap joint. A first gear ring with a greater diameter is fixed at the first overlap joints, and a third gear ring with a less diameter is fixed at the second overlap joints. The integrated flywheel has advantages of low mass, good manufacturability and high production efficiency.
    Type: Application
    Filed: December 18, 2017
    Publication date: January 14, 2021
    Inventors: Tao XIE, Xiaoran ZHENG, Jizhou OU, Hui XUE, Lang WANG, Yaoyao HUANG
  • Publication number: 20210004544
    Abstract: This application discloses example radio frequency identification systems and example methods for constructing a relay network, a reader, and a repeater. One example radio frequency identification system includes a reader, a repeater, and a target tag. The reader can be configured to send a first signal to the repeater. The repeater can be configured to send an excitation signal to the target tag based on the first signal. The target tag can be configured to send a target backscatter signal based on excitation of the excitation signal, where the target backscatter signal carries electronic product code information. The reader can be further configured to receive the target backscatter signal and obtain the electronic product code information in the target backscatter signal.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 7, 2021
    Inventors: Huaizhi ZHANG, Sunjie WANG, Bo HAN, Lang WANG, Mei JIAN, Junfeng GAO
  • Patent number: 10875149
    Abstract: A slurry dispensing unit for a chemical mechanical polishing (CMP) apparatus is provided. The slurry dispensing unit includes a nozzle, a mixer, a first fluid source, and a second fluid source. The nozzle is configured to dispense a slurry. The mixer is disposed upstream of the nozzle. The first fluid source is connected to the mixer through a first pipe and configured to provide a first fluid including a first component of the slurry. The second fluid source is connected to the mixer through a second pipe and configured to provide a second fluid including a second component of the slurry, wherein the second component is different from the first component.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: December 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kei-Wei Chen, Chih-Hung Chen, Ying-Lang Wang
  • Patent number: 10868178
    Abstract: Embodiments disclosed herein relate generally to forming an ultra-shallow junction having high dopant concentration and low contact resistance in a p-type source/drain region. In an embodiment, a method includes forming a source/drain region in an active area on a substrate, the source/drain region comprising germanium, performing an ion implantation process using gallium (Ga) to form an amorphous region in the source/drain region, performing an ion implantation process using a dopant into the amorphous region, and subjecting the amorphous region to a thermal process.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Chun-Hung Wu, Chia-Cheng Chen, Liang-Yin Chen, Huicheng Chang, Ying-Lang Wang
  • Patent number: 10854713
    Abstract: A method includes forming a flowable dielectric layer in a trench of a substrate; curing the flowable dielectric layer; and annealing the cured flowable dielectric layer to form an insulation structure and a liner layer. The insulation structure is formed in the trench, the liner layer is formed between the insulation structure and the substrate, and the liner layer includes nitrogen.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: December 1, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jia-Ming Lin, Shiu-Ko Jangjian, Chun-Che Lin, Ying-Lang Wang, Wei-Ken Lin, Chuan-Pu Liu
  • Patent number: 10840330
    Abstract: A method includes method includes forming a dummy gate stack over a semiconductor substrate, wherein the semiconductor substrate is comprised in a wafer, removing the dummy gate stack to form a recess, forming a gate dielectric layer in the recess, and forming a metal layer in the recess and over the gate dielectric layer. The metal layer has an n-work function. A block layer is deposited over the metal layer using Atomic Layer Deposition (ALD). The remaining portion of the recess is filled with metallic materials, wherein the metallic materials are overlying the metal layer.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: November 17, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jung-Chih Tsao, Chi-Cheng Hung, Yu-Sheng Wang, Wen-Hsi Lee, Kei-Wei Chen, Ying-Lang Wang
  • Patent number: 10804370
    Abstract: In an embodiment, a method includes: performing a self-limiting process to modify a top surface of a wafer; after the self-limiting process completes, removing the modified top surface from the wafer; and repeating the performing the self-limiting process and the removing the modified top surface from the wafer until a thickness of the wafer is decreased to a predetermined thickness.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: October 13, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih Hung Chen, Kei-Wei Chen, Ying-Lang Wang
  • Publication number: 20200279944
    Abstract: Embodiments disclosed herein relate to using an implantation process and a melting anneal process performed on a nanosecond scale to achieve a high surface concentration (surface pile up) dopant profile and a retrograde dopant profile simultaneously. In an embodiment, a method includes forming a source/drain structure in an active area on a substrate, the source/drain structure including a first region comprising germanium, implanting a first dopant into the first region of the source/drain structure to form an amorphous region in at least the first region of the source/drain structure, implanting a second dopant into the amorphous region containing the first dopant, and heating the source/drain structure to liquidize and convert at least the amorphous region into a crystalline region, the crystalline region containing the first dopant and the second dopant.
    Type: Application
    Filed: May 18, 2020
    Publication date: September 3, 2020
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Wen-Yen Chen, Ying-Lang Wang, Liang-Yin Chen, Li-Ting Wang, Huicheng Chang
  • Publication number: 20200258756
    Abstract: An apparatus includes a first metrology tool configured to measure an initial thickness of a wafer. The apparatus includes a controller connected to the first metrology tool and configured to calculate a polishing time based on a material removal rate, a predetermined thickness and the initial thickness of the wafer. The apparatus includes a polishing tool connected to the controller and configured to polish the wafer for a first duration equal to the polishing time. The apparatus includes a second metrology tool connected to the controller and configured to measure a polished thickness. The controller is configured for receiving the initial thickness from the first metrology tool and the polished thickness from the second metrology tool, updating the material removal rate based on the predetermined thickness, the polishing time and the polished thickness, and calculating an etching time for etching the polished wafer using the polished thickness.
    Type: Application
    Filed: April 30, 2020
    Publication date: August 13, 2020
    Inventors: Yuan-Hsuan CHEN, Kei-Wei CHEN, Ying-Lang WANG, Kuo-Hsiu WEI
  • Patent number: 10658510
    Abstract: Embodiments disclosed herein relate to using an implantation process and a melting anneal process performed on a nanosecond scale to achieve a high surface concentration (surface pile up) dopant profile and a retrograde dopant profile simultaneously. In an embodiment, a method includes forming a source/drain structure in an active area on a substrate, the source/drain structure including a first region comprising germanium, implanting a first dopant into the first region of the source/drain structure to form an amorphous region in at least the first region of the source/drain structure, implanting a second dopant into the amorphous region containing the first dopant, and heating the source/drain structure to liquidize and convert at least the amorphous region into a crystalline region, the crystalline region containing the first dopant and the second dopant.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: May 19, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Wen-Yen Chen, Ying-Lang Wang, Liang-Yin Chen, Li-Ting Wang, Huicheng Chang
  • Patent number: 10643853
    Abstract: A wafer thinning apparatus includes a first metrology tool configured to measure an initial thickness of the wafer. The wafer thinning apparatus further includes a controller connected to the first metrology tool, and configured to determine a polishing time based on the initial thickness, a predetermined thickness and a material removal rate. The wafer thinning apparatus further includes a polishing tool connected to the controller configured to polish the wafer for a period of time equal to the polishing time. The wafer thinning apparatus includes a second metrology tool connected to the controller and the polishing tool, and configured to measure a polished thickness. The controller is configured to update the material removal rate based on the polished thickness, the predetermined thickness and the polishing time.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: May 5, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yuan-Hsuan Chen, Kei-Wei Chen, Ying-Lang Wang, Kuo-Hsiu Wei
  • Patent number: 10643892
    Abstract: The present disclosure provides methods for forming conductive features in a dielectric layer without using adhesion layers or barrier layers and devices formed thereby. In some embodiments, a structure comprising a dielectric layer over a substrate, and a conductive feature disposed through the dielectric layer. The dielectric layer has a lower surface near the substrate and a top surface distal from the substrate. The conductive feature is in direct contact with the dielectric layer, and the dielectric layer comprises an implant species. A concentration of the implant species in the dielectric layer has a peak concentration proximate the top surface of the dielectric layer, and the concentration of the implant species decreases from the peak concentration in a direction towards the lower surface of the dielectric layer.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: May 5, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Chieh Wu, Tang-Kuei Chang, Kuo-Hsiu Wei, Kei-Wei Chen, Ying-Lang Wang, Su-Hao Liu, Kuo-Ju Chen, Liang-Yin Chen, Huicheng Chang, Ting-Kui Chang, Chia Hsuan Lee
  • Publication number: 20200119195
    Abstract: Embodiments disclosed herein relate generally to forming an ultra-shallow junction having high dopant concentration and low contact resistance in a p-type source/drain region. In an embodiment, a method includes forming a source/drain region in an active area on a substrate, the source/drain region comprising germanium, performing an ion implantation process using gallium (Ga) to form an amorphous region in the source/drain region, performing an ion implantation process using a dopant into the amorphous region, and subjecting the amorphous region to a thermal process.
    Type: Application
    Filed: December 11, 2019
    Publication date: April 16, 2020
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Chun-Hung Wu, Chia-Cheng Chen, Liang-Yin Chen, Huicheng Chang, Ying-Lang Wang
  • Publication number: 20200091425
    Abstract: The present disclosure, in some embodiments, relates to a method of forming a resistive random access memory (RRAM) device. The method includes forming one or more bottom electrode films over a lower interconnect layer within a lower inter-level dielectric layer. A data storage film having a variable resistance is formed above the one or more bottom electrode films. A lower top electrode film including a metal is over the data storage film, one or more oxygen barrier films are over the lower top electrode film, and an upper top electrode film including a metal nitride is formed over the one or more oxygen barrier films The one or more oxygen barrier films include one or more of a metal oxide film and a metal oxynitride film. The upper top electrode film is formed to be completely confined over a top surface of the one or more oxygen barrier films.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 19, 2020
    Inventors: Wen-Ting Chu, Tong-Chern Ong, Ying-Lang Wang
  • Patent number: D907989
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: January 19, 2021
    Inventor: Lang Wang