Patents by Inventor Liyang Zhang

Liyang Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200227592
    Abstract: The present application provides a semiconductor structure and a method for manufacturing the same. The semiconductor structure includes: a substrate on which at least one light guide groove is provided, the light guide groove penetrating the substrate; and a light emitting structure disposed on one side of the substrate, the light emitting structure including at least one set of a first electrode and a second electrode. The light guide groove at least corresponds to one set of a first electrode and a second electrode to prevent bad points. A wavelength conversion dielectric layer is filled into the light guide groove to avoid a coffee ring effect and achieve uniform and full-color light emission of a light emitting device. The semiconductor structure may further save manufacturing costs and prevent crosstalk between light emitted from various light emitting units.
    Type: Application
    Filed: March 30, 2020
    Publication date: July 16, 2020
    Inventors: Liyang ZHANG, Kai CHENG
  • Publication number: 20200194622
    Abstract: A surface roughening method includes the following steps: preparing a first epitaxial layer of a three-dimensional island shape growth over a light emitting structure; and preparing a discontinuous second epitaxial layer over the first epitaxial layer. The surface roughening method provided in the present application is simple and convenient, and improves the efficiency. In addition to the epitaxial growth process, it is not necessary to use an additional process such as wet etching, photonic crystal and other processes to further process the surface of the epitaxial layer, and the method may be implemented by means of one process in a same reaction equipment.
    Type: Application
    Filed: February 26, 2020
    Publication date: June 18, 2020
    Inventors: Liyang ZHANG, Kai CHENG
  • Patent number: 10636836
    Abstract: A semiconductor light-emitting device comprises: an insulating base, a current diffusion layer, light-emitting structure layers and an insulating layer. The current diffusion layer includes: a first electrode connecting part, a second electrode connecting part, N contact parts and N+1 flat parts. N+1 light-emitting structure layers are correspondingly disposed on the N+1 flat parts, and each of the N+1 light-emitting structure layers includes: a first semiconductor layer, an active layer and a second semiconductor layer sequentially stacked on a corresponding flat part. N grooves are formed on a side of the second semiconductor layer away from the active layer, depth of the N grooves is less than the thickness of the second semiconductor layer, and the N contact parts correspond to the N grooves.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: April 28, 2020
    Assignee: Enkris Semiconductor, Inc.
    Inventors: Liyang Zhang, Kai Cheng
  • Publication number: 20200109382
    Abstract: The present disclosure concerns polynucleotides and amino acids of Acidaminococcus sp. Cas12a (Cpf1) and methods for their use for genome editing in eukaryotic cells.
    Type: Application
    Filed: August 8, 2019
    Publication date: April 9, 2020
    Inventors: Liyang Zhang, Christopher Anthony Vakulskas, Nicole Mary Bode, Michael Allen Collingwood, Kristin Renee Beltz, Mark Aaron Behlke
  • Publication number: 20200043867
    Abstract: A substrate and a method for preparing the same relate to the field of semiconductors. The substrate includes a base substrate (10); a thin film layer (11), wherein the thin film layer (11) covers a part of a surface of the base substrate (10), so that the base substrate (10) is provided with an exposed surface (100) that is not covered by the thin film layer (11); and recessed hole(s) (101) formed in at least a part of the exposed surface (100). The substrate with the recessed hole(s) may release stresses that are generated due to lattice mismatch and thermal stress mismatch when an epitaxial layer is grown on the substrate and reduce the risk of occurrence of defects and cracks due to excessive pressure, thereby reducing the warping of a semiconductor subsequently prepared on the substrate and making it have a better quality and performance.
    Type: Application
    Filed: October 15, 2019
    Publication date: February 6, 2020
    Inventors: Liyang ZHANG, Kai CHENG
  • Patent number: 10446605
    Abstract: A semiconductor device and a method for fabricating the same are provided. The semiconductor device includes: a substrate, a bonding metal layer, a reflective layer, a first conductive layer, an active layer, a second conductive layer, first electrode(s) and second electrode(s). The first electrode(s) extends, from one side of the bonding metal layer away from the substrate, to the first conductive layer, to be connected with the bonding metal layer and the first conductive layer. The second electrode(s) penetrates through the substrate and the bonding metal layer to be in contact with the reflective layer. The semiconductor device, forming a structure sharing the first conductive layer, has more uniform illumination and a higher light extraction rate, and eliminates interferences between pixel units, achieves better uniformity of emitted light wavelength and makes distribution of electric current flowing through different pixel units more even.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: October 15, 2019
    Assignee: Enkris Semiconductor, Inc.
    Inventor: Liyang Zhang
  • Publication number: 20190148586
    Abstract: An patterned Si substrate-based LED epitaxial wafer and a preparation method therefor, the LED epitaxial wafer comprising: a patterned Si substrate (1) and an Al2O3 coating (2) growing on the patterned Si substrate (1); sequentially growing on the Al2O3 coating (2) are a nucleating layer (3), a first buffer layer (4), a first insertion layer (5), a second buffer layer (6), a second insertion layer (7), an n-GaN layer (8), a quantum well layer (9), a p-GaN layer (10), an n-electrode (14) electrically connected to the n-GaN layer and a p-electrode (13) electrically connected to the p-GaN layer. The present invention is suitable for the preparation of large-sized LED epitaxial wafers. Furthermore, the crystal quality is improved, and the light extraction efficiency of the LED die is improved.
    Type: Application
    Filed: March 28, 2017
    Publication date: May 16, 2019
    Applicant: ENKRIS SEMICONDUCTOR, INC
    Inventors: Liyang ZHANG, Kai CHENG
  • Publication number: 20190051697
    Abstract: A semiconductor device and a method for fabricating the same are provided. The semiconductor device includes: a substrate, a bonding metal layer, a reflective layer, a first conductive layer, an active layer, a second conductive layer, first electrode(s) and second electrode(s). The first electrode(s) extends, from one side of the bonding metal layer away from the substrate, to the first conductive layer, to be connected with the bonding metal layer and the first conductive layer. The second electrode(s) penetrates through the substrate and the bonding metal layer to be in contact with the reflective layer. The semiconductor device, forming a structure sharing the first conductive layer, has more uniform illumination and a higher light extraction rate, and eliminates interferences between pixel units, achieves better uniformity of emitted light wavelength and makes distribution of electric current flowing through different pixel units more even.
    Type: Application
    Filed: January 12, 2017
    Publication date: February 14, 2019
    Inventor: Liyang Zhang
  • Publication number: 20190035845
    Abstract: A semiconductor light-emitting device comprises: an insulating base, a current diffusion layer, light-emitting structure layers and an insulating layer. The current diffusion layer includes: a first electrode connecting part, a second electrode connecting part, N contact parts and N+1 flat parts. N+1 light-emitting structure layers are correspondingly disposed on the N+1 flat parts, and each of the N+1 light-emitting structure layers includes: a first semiconductor layer, an active layer and a second semiconductor layer sequentially stacked on a corresponding flat part. N grooves are formed on a side of the second semiconductor layer away from the active layer, depth of the N grooves is less than the thickness of the second semiconductor layer, and the N contact parts correspond to the N grooves.
    Type: Application
    Filed: October 1, 2018
    Publication date: January 31, 2019
    Inventors: Liyang ZHANG, Kai CHENG
  • Patent number: 10100385
    Abstract: A high-formability, super-high-strength, hot-dip galvanized steel plate, the chemical composition of which comprises, based on weight percentage, C: 0.15-0.25 wt %, Si: 1.00-2.00 wt %, Mn: 1.50-3.00 wt %, P?0.015 wt %, S?0.012 wt %, Al: 0.03-0.06 wt %, N?0.008 wt %, and the balance of iron and unavoidable impurities. The room temperature structure of the steel plate comprises 10-30% ferrite, 60-80% martensite and 5-15% residual austenite. The steel plate has a yield strength of 600-900 MPa, a tensile strength of 980-1200 MPa, and an elongation of 15-22%. Through an appropriate composition design, a super-high-strength, cold rolled, hot-dip galvanized steel plate is manufactured by continuous annealing, wherein no expensive alloy elements are added; instead, remarkable increase of strength along with good plasticity can be realized just by appropriate augment of Si, Mn contents in combination with suitable processes of annealing and furnace atmosphere control.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: October 16, 2018
    Assignee: Baoshan Iron & Steel Co., Ltd.
    Inventors: Yong Zhong, Li Wang, Weijun Feng, Liyang Zhang
  • Patent number: 10044335
    Abstract: A multi-mode multi-band power amplifier includes a controller, a wide-band amplifier channel and a fundamental impedance transformer. The controller receives an external signal and outputs a control signal according to the external signal. The wide-band amplifier channel receives single-band or multi-band RF signals through the input terminal, performs power amplification on the RF signals and outputs the RF signals through the output terminal. The fundamental impedance transformer includes a first segment shared by RF signals in all bands, second segments respectively special for RF signals in all bands, and a switching circuit controlled by the controller to separate RF signals subject to power amplification to the second segment in a switchable manner for multiplexed outputs.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: August 7, 2018
    Assignee: LANSUS TECHNOLOGIES INC.
    Inventors: Hua Long, Liyang Zhang, Zhenjuan Cheng, Dongjie Tang, Qian Zhao
  • Patent number: 10044334
    Abstract: A power amplifier gain attenuation circuit includes: a gain attenuation (reduction) circuit configured to receive an input signal, an external drive signal and a bias voltage, and output a secondary input signal after attenuating the input signal depending on the drive signal and bias voltage; an amplifier including: a bias input terminal configured to receive a bias voltage; a signal input terminal configured to receive a secondary input signal, and an output terminal configured to output a gained output signal. The power amplifier gain attenuation circuit can reduce a gain effectively, and the amount of phase jump caused by the attenuation is quite small.
    Type: Grant
    Filed: December 24, 2017
    Date of Patent: August 7, 2018
    Assignee: LANSUS TECHNOLOGIES INC.
    Inventors: Hua Long, Liyang Zhang, Zhenjuan Cheng, Dongjie Tang, Qian Zhao
  • Publication number: 20180138881
    Abstract: A power amplifier output power control circuit includes a first operational amplifier with a negative input terminal configured to receive a power control signal; a first PMOS transistor with a grid electrode connected to an output terminal of the first operational amplifier, a source electrode connected to an external power source, and a drain electrode grounded via a voltage dividing network; a power amplifier with a power end connected to the drain electrode of the first PMOS transistor, an input terminal configured to access to a signal to be amplified, and an output terminal configured to amplify the signal; and a current sampling circuit configured to produce sampling current after sampling current across the first PMOS transistor and providing a negative feedback signal for the positive input terminal of the first operational amplifier according to the sampling current such that total output power of the power amplifier keeps unchanged.
    Type: Application
    Filed: December 25, 2017
    Publication date: May 17, 2018
    Applicant: LANSUS TECHNOLOGIES INC.
    Inventors: Hua LONG, Liyang ZHANG, Zhenjuan CHENG, Dongjie TANG, Qian ZHAO
  • Publication number: 20180138880
    Abstract: A power amplifier gain attenuation circuit includes: a gain attenuation (reduction) circuit configured to receive an input signal, an external drive signal and a bias voltage, and output a secondary input signal after attenuating the input signal depending on the drive signal and bias voltage; an amplifier including: a bias input terminal configured to receive a bias voltage; a signal input terminal configured to receive a secondary input signal, and an output terminal configured to output a gained output signal. The power amplifier gain attenuation circuit can reduce a gain effectively, and the amount of phase jump caused by the attenuation is quite small.
    Type: Application
    Filed: December 24, 2017
    Publication date: May 17, 2018
    Applicant: LANSUS TECHNOLOGIES INC.
    Inventors: Hua LONG, Liyang ZHANG, Zhenjuan CHENG, Dongjie TANG, Qian ZHAO
  • Patent number: 9973164
    Abstract: A power amplifier output power control circuit includes a first operational amplifier with a negative input terminal configured to receive a power control signal; a first PMOS transistor with a grid electrode connected to an output terminal of the first operational amplifier, a source electrode connected to an external power source, and a drain electrode grounded via a voltage dividing network; a power amplifier with a power end connected to the drain electrode of the first PMOS transistor, an input terminal configured to access to a signal to be amplified, and an output terminal configured to amplify the signal; and a current sampling circuit configured to produce sampling current after sampling current across the first PMOS transistor and providing a negative feedback signal for the positive input terminal of the first operational amplifier according to the sampling current such that total output power of the power amplifier keeps unchanged.
    Type: Grant
    Filed: December 25, 2017
    Date of Patent: May 15, 2018
    Assignee: LANSUS TECHNOLOGIES INC.
    Inventors: Hua Long, Liyang Zhang, Zhenjuan Cheng, Dongjie Tang, Qian Zhao
  • Publication number: 20180123539
    Abstract: A multi-mode multi-band power amplifier includes a controller, a wide-band amplifier channel and a fundamental impedance transformer. The controller receives an external signal and outputs a control signal according to the external signal. The wide-band amplifier channel receives single-band or multi-band RF signals through the input terminal, performs power amplification on the RF signals and outputs the RF signals through the output terminal. The fundamental impedance transformer includes a first segment shared by RF signals in all bands, second segments respectively special for RF signals in all bands, and a switching circuit controlled by the controller to separate RF signals subject to power amplification to the second segment in a switchable manner for multiplexed outputs.
    Type: Application
    Filed: December 26, 2017
    Publication date: May 3, 2018
    Applicant: LANSUS TECHNOLOGIES INC.
    Inventors: Hua LONG, Liyang ZHANG, Zhenjuan CHENG, Dongjie TANG, Qian ZHAO
  • Patent number: 9887679
    Abstract: A power amplifier gain switching circuit includes: a gain controller configured to receive an external input signal, output a first input signal, receive an external drive signal, and output a control signal based on the drive signal; an amplifier including: a bias input terminal configured to receive an external bias voltage; a signal input terminal configured to receive the first input signal; a control terminal configured to receive the control signal; and an output terminal configured to output an output signal with a gain; wherein the amplifier is configured to switch a gain factor of the output signal based on the control signal.
    Type: Grant
    Filed: January 29, 2017
    Date of Patent: February 6, 2018
    Assignee: LANSUS TECHNOLOGIES INC.
    Inventors: Qian Zhao, Liyang Zhang, Hua Long, Zhenjuan Cheng, Dongjie Tang
  • Publication number: 20170141749
    Abstract: A power amplifier gain switching circuit includes: a gain controller configured to receive an external input signal, output a first input signal, receive an external drive signal, and output a control signal based on the drive signal; an amplifier including: a bias input terminal configured to receive an external bias voltage; a signal input terminal configured to receive the first input signal; a control terminal configured to receive the control signal; and an output terminal configured to output an output signal with a gain; wherein the amplifier is configured to switch a gain factor of the output signal based on the control signal.
    Type: Application
    Filed: January 29, 2017
    Publication date: May 18, 2017
    Applicant: LANSUS TECHNOLOGIES INC.
    Inventors: Qian ZHAO, Liyang ZHANG, Hua LONG, Zhenjuan CHENG, Dongjie TANG
  • Patent number: 9595933
    Abstract: A multi-mode multi-band power amplifier and its circuits are provided. The power amplifier comprises a controller, a wide-band amplifier channel, and a fundamental impedance transformer. The controller receives an external signal and outputs a control signal according to the external signal. The wide-band amplifier channel receives a single-band or a multi-band RF signals through the input terminal, performs power amplification on the RF signals and outputs the RF signals through the output terminal. The fundamental impedance transformer comprises a first segment shared by RF signals in all bands, second segments respectively specific to RF signals in all bands, and a switching circuit controlled by the controller to separate a RF signal which is subject to power amplification to the second segment in a switchable manner for multiplexed outputs. A power amplifier output power control circuit, a gain switching circuit, and a gain attenuation circuit are also provided.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: March 14, 2017
    Assignee: LANSUS TECHNOLOGIES INC.
    Inventors: Qian Zhao, Liyang Zhang, Hua Long, Zhenjuan Cheng, Dongjie Tang
  • Publication number: 20160241213
    Abstract: A multi-mode multi-band power amplifier and its circuits are provided. The power amplifier comprises a controller, a wide-band amplifier channel, and a fundamental impedance transformer. The controller receives an external signal and outputs a control signal according to the external signal. The wide-band amplifier channel receives a single-band or a multi-band RF signals through the input terminal, performs power amplification on the RF signals and outputs the RF signals through the output terminal. The fundamental impedance transformer comprises a first segment shared by RF signals in all bands, second segments respectively specific to RF signals in all bands, and a switching circuit controlled by the controller to separate a RF signal which is subject to power amplification to the second segment in a switchable manner for multiplexed outputs. A power amplifier output power control circuit, a gain switching circuit, and a gain attenuation circuit are also provided.
    Type: Application
    Filed: April 26, 2016
    Publication date: August 18, 2016
    Applicant: LANSUS TECHNOLOGIES INC.
    Inventors: Qian ZHAO, Liyang ZHANG, Hua LONG, Zhenjuan CHENG, Dongjie TANG