Patents by Inventor Mark Doczy

Mark Doczy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110097858
    Abstract: Embodiments of a transition metal alloy having an n-type or p-type work function that does not significantly shift at elevated temperature. The disclosed transition metal alloys may be used as, or form a part of, the gate electrode in a transistor. Methods of forming a gate electrode using these transition metal alloys are also disclosed.
    Type: Application
    Filed: February 12, 2010
    Publication date: April 28, 2011
    Inventors: Mark Doczy, Nathan Baxter, Robert S. Chau, Kari Harkonen, Teemu Lang
  • Patent number: 7754552
    Abstract: A hard mask may be formed and maintained over a polysilicon gate structure in a metal gate replacement technology. The maintenance of the hard mask, such as a nitride hard mask, may protect the polysilicon gate structure 14 from the formation of silicide or etch byproducts. Either the silicide or the etch byproducts or their combination may block the ensuing polysilicon etch which is needed to remove the polysilicon gate structure and to thereafter replace it with an appropriate metal gate technology.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: July 13, 2010
    Assignee: Intel Corporation
    Inventors: Chris E. Barns, Justin K. Brask, Mark Doczy
  • Publication number: 20100140717
    Abstract: Described herein are metal gate electrode stacks including a low resistance metal cap in contact with a metal carbonitride diffusion barrier layer, wherein the metal carbonitride diffusion barrier layer is tuned to a particular work function to also serve as a work function metal for a pMOS transistor. In an embodiment, the work function-tuned metal carbonitride diffusion barrier prohibits a low resistance metal cap layer of the gate electrode stack from migrating into the MOS junction. In a further embodiment of the present invention, the work function of the metal carbonitride barrier film is modulated to be p-type with a pre-selected work function by altering a nitrogen concentration in the film.
    Type: Application
    Filed: February 12, 2010
    Publication date: June 10, 2010
    Inventors: Adrien R. Lavoie, Valery M. Dubin, John J. Plombon, Juan E. Dominguez, Harsono S. Simka, Joseph H. Han, Mark Doczy
  • Patent number: 7682891
    Abstract: Described herein are metal gate electrode stacks including a low resistance metal cap in contact with a metal carbonitride diffusion barrier layer, wherein the metal carbonitride diffusion barrier layer is tuned to a particular work function to also serve as a work function metal for a pMOS transistor. In an embodiment, the work function-tuned metal carbonitride diffusion barrier prohibits a low resistance metal cap layer of the gate electrode stack from migrating into the MOS junction. In a further embodiment of the present invention, the work function of the metal carbonitride barrier film is modulated to be p-type with a pre-selected work function by altering a nitrogen concentration in the film.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: March 23, 2010
    Assignee: Intel Corporation
    Inventors: Adrien R. Lavoie, Valery M. Dubin, John J. Plombon, Juan E. Dominguez, Harsono S. Simka, Joseph H. Han, Mark Doczy
  • Patent number: 7666727
    Abstract: A transistor comprising a gate electrode formed on a gate dielectric layer formed on a substrate. A pair of source/drain regions are formed in the substrate on opposite sides of the laterally opposite sidewalls of the gate electrode. The gate electrode has a central portion formed on the gate dielectric layer and over the substrate region between the source and drain regions and a pair sidewall portions which overlap a portion of the source/drain regions wherein the central portion has a first work function and said pair of sidewall portions has a second work function, wherein the second work function is different than the first work function.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: February 23, 2010
    Assignee: Intel Corporation
    Inventors: Brian Doyle, Scott A. Hareland, Mark Doczy, Robert S. Chau
  • Publication number: 20090149012
    Abstract: A semiconductor device comprising a semiconductor body having a top surface and a first and second laterally opposite sidewalls as formed on an insulating substrate is claimed. A gate dielectric is formed on the top surface of the semiconductor body and on the first and second laterally opposite sidewalls of the semiconductor body. A gate electrode is then formed on the gate dielectric on the top surface of the semiconductor body and adjacent to the gate dielectric on the first and second laterally opposite sidewalls of the semiconductor body. The gate electrode comprises a metal film formed directly adjacent to the gate dielectric layer. A pair of source and drain regions are then formed in the semiconductor body on opposite sides of the gate electrode.
    Type: Application
    Filed: February 11, 2009
    Publication date: June 11, 2009
    Inventors: Justin K. Brask, Brian S. Doyle, Jack Kavalieros, Mark Doczy, Uday Shah, Robert S. Chau
  • Patent number: 7531437
    Abstract: A semiconductor device comprising a semiconductor body having a top surface and a first and second laterally opposite sidewalls as formed on an insulating substrate is claimed. A gate dielectric is formed on the top surface of the semiconductor body and on the first and second laterally opposite sidewalls of the semiconductor body. A gate electrode is then formed on the gate dielectric on the top surface of the semiconductor body and adjacent to the gate dielectric on the first and second laterally opposite sidewalls of the semiconductor body. The gate electrode comprises a metal film formed directly adjacent to the gate dielectric layer. A pair of source and drain regions are then formed in the semiconductor body on opposite sides of the gate electrode.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: May 12, 2009
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Brian S. Doyle, Jack Kavalieros, Mark Doczy, Uday Shah, Robert S. Chau
  • Patent number: 7528025
    Abstract: A semiconductor device comprising a semiconductor body having a top surface and a first and second laterally opposite sidewalls as formed on an insulating substrate is claimed. A gate dielectric is formed on the top surface of the semiconductor body and on the first and second laterally opposite sidewalls of the semiconductor body. A gate electrode is then formed on the gate dielectric on the top surface of the semiconductor body and adjacent to the gate dielectric on the first and second laterally opposite sidewalls of the semiconductor body. The gate electrode comprises a metal film formed directly adjacent to the gate dielectric layer. A pair of source and drain regions are then formed in the semiconductor body on opposite sides of the gate electrode.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: May 5, 2009
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Brian S. Dovle, Jack Kavalleros, Mark Doczy, Uday Shah, Robert S. Chau
  • Publication number: 20090020825
    Abstract: Complementary metal oxide semiconductor metal gate transistors may be formed by depositing a metal layer in trenches formerly inhabited by patterned gate structures. The patterned gate structures may have been formed of polysilicon in one embodiment. The metal layer may have a workfunction most suitable for forming one type of transistor, but is used to form both the n and p-type transistors. The workfunction of the metal layer may be converted, for example, by ion implantation to make it more suitable for use in forming transistors of the opposite type.
    Type: Application
    Filed: September 10, 2008
    Publication date: January 22, 2009
    Inventors: Mark Doczy, Mitchell Taylor, Justin K. Brask, Jack Kavalieros, Suman Datta, Matthew V. Metz, Robert S. Chau, Jack Hwang
  • Publication number: 20080311762
    Abstract: Methods and apparatus relating to surface roughness reduction are described. In one embodiment, a particle beam may be directed onto the surface roughness of a semiconductor device to reduce the roughness. Other embodiments are also disclosed.
    Type: Application
    Filed: June 18, 2007
    Publication date: December 18, 2008
    Inventor: Mark Doczy
  • Patent number: 7439113
    Abstract: Complementary metal oxide semiconductor metal gate transistors may be formed by depositing a metal layer in trenches formerly inhabited by patterned gate structures. The patterned gate structures may have been formed of polysilicon in one embodiment. The metal layer may have a workfunction most suitable for forming one type of transistor, but is used to form both the n and p-type transistors. The workfunction of the metal layer may be converted, for example, by ion implantation to make it more suitable for use in forming transistors of the opposite type.
    Type: Grant
    Filed: July 12, 2004
    Date of Patent: October 21, 2008
    Assignee: Intel Corporation
    Inventors: Mark Doczy, Mitchell Taylor, Justin K. Brask, Jack Kavalieros, Suman Datta, Matthew V. Metz, Robert S. Chau, Jack Hwang
  • Publication number: 20080242012
    Abstract: A method for fabricating a high quality silicon oxynitride layer for a high-k/metal gate transistor comprises depositing a high-k dielectric layer on a substrate, depositing a barrier layer on the high-k dielectric layer, wherein the barrier layer includes at least one of nitrogen or oxygen, depositing a capping layer on the barrier layer, and annealing the substrate at a temperature that causes at least a portion of the nitrogen and/or oxygen in the barrier layer to diffuse to an interface between the high-k dielectric layer and the substrate. The diffused nitrogen or oxygen forms a high-quality silicon oxynitride layer at the interface. The high-k dielectric layer, the barrier layer, and the capping layer may then be etched to form a gate stack for use in a high-k/metal gate transistor. The capping layer may be replaced with a metal gate electrode using a replacement metal gate process.
    Type: Application
    Filed: March 28, 2007
    Publication date: October 2, 2008
    Inventors: Sangwoo Pae, Jose Maiz, Gilbert Dewey, Matthew V. Metz, Markus Kuhn, Mark Doczy, Jack Kavalieros
  • Publication number: 20080224235
    Abstract: A method for carrying out a replacement metal gate process comprises providing a transistor in a reactor, wherein the transistor includes a gate stack, removing at least a portion of the gate stack to expose a surface of a barrier layer, causing a temperature of the reactor be less than or equal to 150° C., introducing methylpyrrolidine:alane (MPA) proximate to the surface of the barrier layer, and carrying out a CVD process to deposit aluminum metal on the barrier layer using a bottom-up deposition mechanism.
    Type: Application
    Filed: March 15, 2007
    Publication date: September 18, 2008
    Inventors: Adrien R. Lavoie, Mark Doczy
  • Patent number: 7420254
    Abstract: A method for making a semiconductor device is described. That method comprises forming a dielectric layer on a substrate, and forming an impurity containing metal layer on the dielectric layer. A metal gate electrode is then formed from the impurity containing metal layer. Also described is a semiconductor device that comprises a metal gate electrode that is formed on a dielectric layer, which is formed on a substrate. The metal gate electrode includes a sufficient amount of an impurity to shift the workfunction of the metal gate electrode by at least about 0.1 eV.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: September 2, 2008
    Assignee: Intel Corporation
    Inventors: Robert Chau, Mark Doczy, Markus Kuhn
  • Publication number: 20080157212
    Abstract: Described herein are metal gate electrode stacks including a low resistance metal cap in contact with a metal carbonitride diffusion barrier layer, wherein the metal carbonitride diffusion barrier layer is tuned to a particular work function to also serve as a work function metal for a pMOS transistor. In an embodiment, the work function-tuned metal carbonitride diffusion barrier prohibits a low resistance metal cap layer of the gate electrode stack from migrating into the MOS junction. In a further embodiment of the present invention, the work function of the metal carbonitride barrier film is modulated to be p-type with a pre-selected work function by altering a nitrogen concentration in the film.
    Type: Application
    Filed: December 28, 2006
    Publication date: July 3, 2008
    Inventors: Adrien R. Lavoie, Valery M. Dubin, John J. Plombon, Juan E. Dominguez, Harsono S. Simka, Joseph H. Han, Mark Doczy
  • Patent number: 7361958
    Abstract: A semiconductor device comprising a semiconductor body having a top surface and a first and second laterally opposite sidewalls as formed on an insulating substrate is claimed. A gate dielectric is formed on the top surface of the semiconductor body and on the first and second laterally opposite sidewalls of the semiconductor body. A gate electrode is then formed on the gate dielectric on the top surface of the semiconductor body and adjacent to the gate dielectric on the first and second laterally opposite sidewalls of the semiconductor body. The gate electrode comprises a metal film formed directly adjacent to the gate dielectric layer. A pair of source and drain regions are then formed in the semiconductor body on opposite sides of the gate electrode.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: April 22, 2008
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Brian S. Doyle, Jack Kavalieros, Mark Doczy, Uday Shah, Robert S. Chau
  • Publication number: 20080090397
    Abstract: A semiconductor device comprising a semiconductor body having a top surface and a first and second laterally opposite sidewalls as formed on an insulating substrate is claimed. A gate dielectric is formed on the top surface of the semiconductor body and on the first and second laterally opposite sidewalls of the semiconductor body. A gate electrode is then formed on the gate dielectric on the top surface of the semiconductor body and adjacent to the gate dielectric on the first and second laterally opposite sidewalls of the semiconductor body. The gate electrode comprises a metal film formed directly adjacent to the gate dielectric layer. A pair of source and drain regions are then formed in the semiconductor body on opposite sides of the gate electrode.
    Type: Application
    Filed: November 21, 2007
    Publication date: April 17, 2008
    Inventors: Justin Brask, Brian Dovle, Jack Kavalleros, Mark Doczy, Uday Shah, Robert Chau
  • Publication number: 20080087985
    Abstract: A buffer layer and a high-k metal oxide dielectric may be formed over a smooth silicon substrate. The substrate smoothness may reduce column growth of the high-k metal oxide gate dielectric. The surface of the substrate may be saturated with hydroxyl terminations prior to deposition.
    Type: Application
    Filed: November 29, 2007
    Publication date: April 17, 2008
    Inventors: Justin Brask, Jack Kavalieros, Mark Doczy, Matthew Metz, Suman Datta, Uday Shah, Gilbert Dewey, Robert Chau
  • Patent number: 7326656
    Abstract: A semiconductor device comprising a semiconductor body having a top surface and a first and second laterally opposite sidewalls as formed on an insulating substrate is claimed. A gate dielectric is formed on the top surface of the semiconductor body and on the first and second laterally opposite sidewalls of the semiconductor body. A gate electrode is then formed on the gate dielectric on the top surface of the semiconductor body and adjacent to the gate dielectric on the first and second laterally opposite sidewalls of the semiconductor body. The gate electrode comprises a metal film formed directly adjacent to the gate dielectric layer. A pair of source and drain regions are then formed in the semiconductor body on opposite sides of the gate electrode.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: February 5, 2008
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Brian S. Doyle, Jack Kavalleros, Mark Doczy, Uday Shah, Robert S. Chau
  • Patent number: 7316949
    Abstract: At least a p-type and n-type semiconductor device deposited upon a semiconductor wafer containing metal or metal alloy gates. More particularly, a complementary metal-oxide-semiconductor (CMOS) device is formed on a semiconductor wafer having n-type and p-type metal gates.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: January 8, 2008
    Assignee: Intel Corporation
    Inventors: Mark Doczy, Justin K. Brask, Steven J. Keating, Chris E. Barns, Brian S. Doyle, Michael L. McSwiney, Jack T. Kavalieros, John P. Barnak