Patents by Inventor Mark Van Dal

Mark Van Dal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190165182
    Abstract: A method of manufacturing a semiconductor device includes forming a nanowire foundation layer on a semiconductor substrate. A first nanowire is formed on the nanowire foundation layer. A gate structure is formed over the nanowire foundation layer and wrapping the first nanowire. A second nanowire is formed on and in contact with the first nanowire in a bottom-up manner. A source/drain region is formed on the gate structure and wrapping the second nanowire.
    Type: Application
    Filed: May 15, 2018
    Publication date: May 30, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Mark VAN DAL
  • Publication number: 20190165134
    Abstract: A method of manufacturing a semiconductor structure comprises etching a semiconductor substrate having a top surface extending along a (001) crystal plane, such that a majority of a top surface of the etched semiconductor substrate extends along {111} crystal planes; forming a first epitaxial layer in contact with the top surface of the etched semiconductor substrate; and forming a second epitaxial layer on the first epitaxial layer.
    Type: Application
    Filed: June 16, 2018
    Publication date: May 30, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Carlos H. DIAZ, Mark VAN DAL, Martin Christopher HOLLAND
  • Publication number: 20190148218
    Abstract: A method includes performing an epitaxy to grow a semiconductor layer, which includes a top portion over a semiconductor region. The semiconductor region is between two insulation regions that are in a substrate. The method further includes recessing the insulation regions to expose portions of sidewalls of the semiconductor region, and etching a portion of the semiconductor region, wherein the etched portion of the semiconductor region is under and contacting a bottom surface of the semiconductor layer, wherein the semiconductor layer is spaced apart from an underlying region by an air gap. A gate dielectric and a gate electrode are formed over the semiconductor layer.
    Type: Application
    Filed: December 21, 2018
    Publication date: May 16, 2019
    Inventors: Georgios Vellianitis, Mark Van Dal, Blandine Duriez
  • Publication number: 20190148243
    Abstract: A fin including a bottom portion, a first sacrificial layer disposed over the bottom portion, a first semiconductor layer disposed over the first sacrificial layer, a second sacrificial layer disposed over the first semiconductor layer and a second semiconductor layer disposed over the second sacrificial layer, is formed. The second semiconductor layer protrudes from a first insulating layer. A dummy gate is formed over the second semiconductor layer. A sidewall spacer layer is formed on side faces of the dummy gate. A first dielectric layer is formed over the dummy gate and the sidewall spacer layer. The dummy gate is removed, thereby forming a gate space. The first insulating layer is etched in the gate space, thereby exposing the first semiconductor layer and the first and second sacrificial layers. The first and second sacrificial layers are removed. A gate dielectric layer and a gate electrode layer are formed.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 16, 2019
    Inventors: Mark VAN DAL, Gerben DOORNBOS
  • Publication number: 20190131181
    Abstract: In a method of manufacturing a semiconductor device, a fin structure having a bottom portion, an intermediate portion disposed over the bottom portion and an upper portion disposed over the intermediate portion is formed. The intermediate portion is removed at a source/drain region of the fin structure, thereby forming a space between the bottom portion and the upper portion. An insulating layer is formed in the space. A source/drain contact layer is formed over the upper portion. The source/drain contact layer is separated by the insulating layer from the bottom portion of the fin structure.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 2, 2019
    Inventors: Mark VAN DAL, Gerben DOORNBOS
  • Publication number: 20190131413
    Abstract: A fin structure for a fin field effect transistor (FinFET) device is provided. The device includes a substrate, a first semiconductor material disposed on the substrate, a shallow trench isolation (STI) region disposed over the substrate and formed on opposing sides of the first semiconductor material, and a second semiconductor material forming a first fin and a second fin disposed on the STI region, the first fin spaced apart from the second fin by a width of the first semiconductor material. The fin structure may be used to generate the FinFET device by forming a gate layer formed over the first fin, a top surface of the first semiconductor material disposed between the first and second fins, and the second fin.
    Type: Application
    Filed: December 18, 2018
    Publication date: May 2, 2019
    Inventors: Georgios Vellianitis, Mark van Dal, Blandine Duriez, Richard Kenneth Oxland
  • Publication number: 20190131180
    Abstract: In a method of manufacturing a semiconductor device, a fin structure having a bottom portion, an intermediate portion disposed over the bottom portion and an upper portion disposed over the intermediate portion is formed. The intermediate portion is removed at a source/drain region of the fin structure, thereby forming a space between the bottom portion and the upper portion. An insulating layer is formed in the space. A source/drain contact layer is formed over the upper portion. The source/drain contact layer is separated by the insulating layer from the bottom portion of the fin structure.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 2, 2019
    Inventors: Mark VAN DAL, Gerben Doornbos
  • Patent number: 10276719
    Abstract: In a method of manufacturing a semiconductor device, an opening is formed in an interlayer dielectric layer such that a source/drain region is exposed in the opening. A first semiconductor layer is formed to fully cover the exposed source/drain region within the opening. A heating process is performed to make an upper surface of the first semiconductor layer substantially flat. A conductive contact layer is formed over the first semiconductor layer.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: April 30, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Blandine Duriez, Gerben Doornbos, Mark Van Dal, Martin Christopher Holland
  • Patent number: 10263073
    Abstract: A gate-all-around field effect transistor (GAA FET) includes an InAs nano-wire as a channel layer, a gate dielectric layer wrapping the InAs nano-wire, and a gate electrode metal layer formed on the gate dielectric layer. The InAs nano-wire has first to fourth major surfaces three convex-rounded corner surfaces and one concave-rounded corner surface.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: April 16, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Mark Van Dal, Gerben Doornbos, Matthias Passlack, Martin Christopher Holland
  • Publication number: 20190088553
    Abstract: A fin including a bottom portion, a first sacrificial layer disposed over the bottom portion, a first semiconductor layer disposed over the first sacrificial layer, a second sacrificial layer disposed over the first semiconductor layer and a second semiconductor layer disposed over the second sacrificial layer, is formed. The second semiconductor layer protrudes from a first insulating layer. A dummy gate is formed over the second semiconductor layer. A sidewall spacer layer is formed on side faces of the dummy gate. A first dielectric layer is formed over the dummy gate and the sidewall spacer layer. The dummy gate is removed, thereby forming a gate space. The first insulating layer is etched in the gate space, thereby exposing the first semiconductor layer and the first and second sacrificial layers. The first and second sacrificial layers are removed. A gate dielectric layer and a gate electrode layer are formed.
    Type: Application
    Filed: September 18, 2017
    Publication date: March 21, 2019
    Inventors: Mark VAN DAL, Gerben DOORNBOS
  • Publication number: 20190088649
    Abstract: In a method of manufacturing a semiconductor device, a fin structure protruding from a first isolation insulating layer is formed. A second isolation insulating layer made of different material than the first isolation insulating layer is formed so that a first upper portion of the fin structure is exposed. A dummy gate structure is formed over the exposed first upper portion of the first fin structure. The second isolation insulating layer is etched by using the dummy gate structure as an etching mask. The dummy gate structure is removed so that a gate space is formed. The second isolation insulating layer is etched in the gate space so that a second upper portion of the fin structure is exposed from the first isolation insulating layer. A gate dielectric layer and a gate electrode layer are formed over the exposed second portion of the fin structure.
    Type: Application
    Filed: September 18, 2017
    Publication date: March 21, 2019
    Inventors: Gerben DOORNBOS, Mark VAN DAL
  • Publication number: 20190074355
    Abstract: According to one example, a method includes epitaxially growing first portions of a plurality of elongated semiconductor structures on a semiconductor substrate, the elongated semiconductor structures running perpendicular to the substrate. The method further includes forming a gate layer on the substrate, the gate layer contacting the elongated semiconductor structures. The method further includes performing a planarization process on the gate layer and the elongated semiconductor structures, and epitaxially growing second portions of the plurality of elongated semiconductor structures, the second portions comprising a different material than the first portions.
    Type: Application
    Filed: November 2, 2018
    Publication date: March 7, 2019
    Inventors: Richard Kenneth Oxland, Blandine Duriez, Mark Van Dal, Martin Christopher Holland
  • Patent number: 10170378
    Abstract: Semiconductor device includes first and second nanowire structures disposed on semiconductor substrate extending in first direction on substrate. First nanowire structure includes plurality of first nanowires including first nanowire material extending along first direction and arranged in second direction, second direction substantially perpendicular to first direction. Second nanowire structure includes plurality of second nanowires including second nanowire material extending along first direction arranged in second direction. Second nanowire material is not same as first nanowire material. Each nanowire is spaced-apart from immediately adjacent nanowire. First and second gate structures wrap around first and second nanowires at first region of respective first and second nanowire structures. First and second gate structures include gate electrodes.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: January 1, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Gerben Doornbos, Chung-Te Lin, Mark Van Dal
  • Patent number: 10163683
    Abstract: A method includes performing an epitaxy to grow a semiconductor layer, which includes a top portion over a semiconductor region. The semiconductor region is between two insulation regions that are in a substrate. The method further includes recessing the insulation regions to expose portions of sidewalls of the semiconductor region, and etching a portion of the semiconductor region, wherein the etched portion of the semiconductor region is under and contacting a bottom surface of the semiconductor layer, wherein the semiconductor layer is spaced apart from an underlying region by an air gap. A gate dielectric and a gate electrode are formed over the semiconductor layer.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Georgios Vellianitis, Mark van Dal, Blandine Duriez
  • Patent number: 10164031
    Abstract: A fin structure for a fin field effect transistor (FinFET) device is provided. The device includes a substrate, a first semiconductor material disposed on the substrate, a shallow trench isolation (STI) region disposed over the substrate and formed on opposing sides of the first semiconductor material, and a second semiconductor material forming a first fin and a second fin disposed on the STI region, the first fin spaced apart from the second fin by a width of the first semiconductor material. The fin structure may be used to generate the FinFET device by forming a gate layer formed over the first fin, a top surface of the first semiconductor material disposed between the first and second fins, and the second fin.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Georgios Vellianitis, Mark van Dal, Blandine Duriez, Richard Kenneth Oxland
  • Patent number: 10134841
    Abstract: A nanowire comprises a source region, a drain region and a channel region. The source region is modified to reduce the lifetime of minority carriers within the source region. In an embodiment the modification may be performed by implanting either amorphizing dopants or lifetime reducing dopants. Alternatively, the source may be epitaxially grown with a different materials or process conditions to reduce the lifetime of minority carriers within the source region.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: November 20, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Gerben Doornbos, Mark van Dal
  • Publication number: 20180323259
    Abstract: A semiconductor device includes a plurality of fins. Each of the fins has a multi-layer stack comprising a first nanowire and a second nanowire. A first portion of the first nanowire and second nanowire are doped to form source and drain regions. An epitaxial layer wraps around the first portion of first nanowire and second nanowire over the source and drain region. A gate is disposed over a second portion of the first nanowire and second nanowire. The epitaxial layer is interposed in between the first nanowire and the second nanowire over the source and drain region. The epitaxial layer has a zig-zag contour.
    Type: Application
    Filed: May 8, 2017
    Publication date: November 8, 2018
    Inventors: Martin Christopher HOLLAND, Mark VAN DAL, Georgios VELLIANITIS, Blandine DURIEZ, Gerben DOORNBOS
  • Publication number: 20180323312
    Abstract: A multi-stack nanowire device includes a plurality of fins. Each of the fins has a multi-layer stack comprising a first nanowire and a second nanowire. A first portion of the first nanowire and second nanowire are doped to form source and drain regions. A second portion of the first nanowire and second nanowire is channel regions between the source and drain regions. An epitaxial layer wraps around the second portion of first nanowire and second nanowire. A gate is disposed over the second portion of the first nanowire and second nanowire. The epitaxial layer is interposed in between the first nanowire and the second nanowire over the channel region.
    Type: Application
    Filed: May 8, 2017
    Publication date: November 8, 2018
    Inventors: Mark VAN DAL, Gerben DOORNBOS
  • Patent number: 10121858
    Abstract: According to one example, a method includes epitaxially growing first portions of a plurality of elongated semiconductor structures on a semiconductor substrate, the elongated semiconductor structures running perpendicular to the substrate. The method further includes forming a gate layer on the substrate, the gate layer contacting the elongated semiconductor structures. The method further includes performing a planarization process on the gate layer and the elongated semiconductor structures, and epitaxially growing second portions of the plurality of elongated semiconductor structures, the second portions comprising a different material than the first portions.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: November 6, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Richard Kenneth Oxland, Blandine Duriez, Mark van Dal, Martin Christopher Holland
  • Publication number: 20180315817
    Abstract: A semiconductor device includes a substrate, a gate structure, at least one nanowire, at least one epitaxy structure, and at least one source/drain spacer. The gate structure is disposed on the substrate. The nanowire extends through the gate structure. The epitaxy structure is disposed on the substrate and is in contact with the nanowire. The source/drain spacer is disposed between the epitaxy structure and the gate structure and is embedded in the epitaxy structure.
    Type: Application
    Filed: June 5, 2017
    Publication date: November 1, 2018
    Inventors: Mark VAN DAL, Gerben DOORNBOS, Chung-Te LIN