Patents by Inventor Min Feng

Min Feng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220344383
    Abstract: The present disclosure relates to an image sensor having an image sensing element surrounded by a BDTI structure, and an associated method of formation. In some embodiments, a first image sensing element and a second image sensing element are arranged next to one another within an image sensing die. A pixel dielectric stack is disposed along a back of the image sensing die overlying the image sensing elements. The pixel dielectric stack includes a first high-k dielectric layer and a second high-k dielectric layer. The BDTI structure is disposed between the first image sensing element and the second image sensing element and extends from the back of the image sensor die to a position within the image sensor die. The BDTI structure includes a trench filling layer surrounded by an isolation dielectric stack. The pixel dielectric stack has a composition different from that of the isolation dielectric stack.
    Type: Application
    Filed: July 26, 2021
    Publication date: October 27, 2022
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Wen-Chang Kuo, Shih-Han Huang
  • Publication number: 20220336505
    Abstract: A metal grid within a trench isolation structure on the back side of an image sensor is coupled to a contact pad so that a voltage on the metal grid is continuously variable with a voltage on the contact pad. One or more conductive structures directly couple the metal grid to a contact pad. The conductive structures may bypass a front side of the image sensor. A bias voltage on the metal grid may be varied through the contact pad whereby a trade-off between reducing cross-talk and increasing quantum efficiency may be adjusted dynamically in accordance with the application of the image sensor, its environment of use, or its mode of operation.
    Type: Application
    Filed: July 12, 2021
    Publication date: October 20, 2022
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Wen-Chang Kuo, Shih-Han Huang
  • Publication number: 20220328447
    Abstract: A semiconductor structure and a manufacturing method thereof are provided. A semiconductor structure includes top, bottom, and middle tiers. The bottom tier includes a first interconnect structure overlying a first semiconductor substrate, and a first front-side bonding structure overlying the first interconnect structure. The middle tier interposed between and electrically coupled to the top and bottom tiers includes a second interconnect structure overlying a second semiconductor substrate, a second front-side bonding structure interposed between the top tier and the second interconnect structure, and a back-side bonding structure interposed between the second semiconductor substrate and the first front-side bonding structure.
    Type: Application
    Filed: April 9, 2021
    Publication date: October 13, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Hsing-Chih Lin, Zheng-Xun Li
  • Patent number: 11462351
    Abstract: A coupled inductor has two pillars that are aligned in a vertical direction, wherein a first coil and a second coil are respectively wound around one of the two pillars, respectively, wherein the bottom surface of winding turns of the first coil and the bottom surface of winding turns of the second coil are separated by a gap, wherein a magnetic material is disposed in the gap and a straight line that is enclosed by each of the first coil and the second coil passes through the two pillars.
    Type: Grant
    Filed: December 22, 2018
    Date of Patent: October 4, 2022
    Assignee: CYNTEC CO., LTD.
    Inventors: Chi-Hsun Lee, Min-Feng Chung
  • Publication number: 20220310507
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip (IC). The IC comprises a first inter-metal dielectric (IMD) structure disposed over a semiconductor substrate. A metal-insulator-metal (MIM) device is disposed over the first IMD structure. The MIM device comprises at least three metal plates that are spaced from one another. The MIM device further comprises a plurality of capacitor insulator structures, where each of the plurality of capacitor insulator structures are disposed between and electrically isolate neighboring metal plates of the at least three metal plates.
    Type: Application
    Filed: June 21, 2021
    Publication date: September 29, 2022
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Hsing-Chih Lin, Kuan-Hua Lin
  • Patent number: 11456176
    Abstract: A device includes a semiconductor substrate, a gate dielectric over the semiconductor substrate, and a gate electrode over the gate dielectric. The gate electrode has a first portion having a first thickness, and a second portion having a second thickness smaller than the first thickness. The device further includes a source/drain region on a side of the gate electrode with the source/drain region extending into the semiconductor substrate, and a device isolation region. The device isolation region has a part having a sidewall contacting a second sidewall of the source/drain region to form an interface. The interface is overlapped by a joining line of the first portion and the second portion of the gate electrode.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: September 27, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Min-Feng Kao, Szu-Ying Chen, Dun-Nian Yaung, Jen-Cheng Liu, Tzu-Hsuan Hsu, Feng-Chi Hung
  • Publication number: 20220277998
    Abstract: Methods and devices of having an enclosure structure formed in a multi-layer interconnect and a through-silicon-via (TSV) extending through the enclosure structure. In some implementations, a protection layer is formed between the enclosure structure and the TSV.
    Type: Application
    Filed: September 2, 2021
    Publication date: September 1, 2022
    Inventors: Min-Feng KAO, Hsing-Chih LIN, Jen-Cheng LIU, Dun-Nian YAUNG
  • Publication number: 20220278144
    Abstract: A semiconductor device according to the present disclosure includes a semiconductor layer, a plurality of metal isolation features disposed in the semiconductor layer, a metal grid disposed directly over the plurality of metal isolation features, and a plurality of microlens features disposed over the metal grid.
    Type: Application
    Filed: July 7, 2021
    Publication date: September 1, 2022
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Wen-Chang Kuo, Sheng-Chau Chen, Feng-Chi Hung, Sheng-Chan Li
  • Publication number: 20220278095
    Abstract: A semiconductor device and a method of forming the same are provided. The semiconductor device includes a first substrate, a capacitor within the first substrate, a diode structure within the first substrate adjacent the capacitor, and a first interconnect structure over the capacitor and the diode structure. A first conductive via of the first interconnect structure electrically couples the capacitor to the diode structure.
    Type: Application
    Filed: July 9, 2021
    Publication date: September 1, 2022
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Hsing-Chih Lin
  • Patent number: 11424228
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes: a semiconductor substrate including a front surface and a back surface; a backside metallization layer formed over the semiconductor substrate, the backside metallization layer being closer to the back surface than to the front surface of the semiconductor substrate, at least a portion of the backside metallization layer forming an inductor structure; and an electrically non-conductive material formed in the semiconductor substrate, the electrically non-conductive material at least partially overlapping the inductor structure from a top view, and the electrically non-conductive material including a top surface, a bottom surface, and sidewalls, the top surface being adjacent to the back surface of the semiconductor substrate. A method for manufacturing a semiconductor structure is also disclosed.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: August 23, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Hsing-Chih Lin, Ching-Chun Wang
  • Publication number: 20220262770
    Abstract: A three-dimensional (3D) integrated circuit (IC) is provided. In some embodiments, the 3D IC comprises a first IC die comprising a first substrate, a first interconnect structure disposed over the first substrate, and a first through substrate via(TSV) disposed through the first substrate. The 3D IC further comprises a second IC die comprising a second substrate, a second interconnect structure disposed over the second substrate, and a second TSV disposed through the second substrate. The 3D IC further comprises a bonding structure arranged between back sides of the first IC die and the second IC die opposite to corresponding interconnect structures and bonding the first IC die and the second IC die. The bonding structure comprises conductive features disposed between and electrically connecting the first TSV and the second TSV.
    Type: Application
    Filed: April 26, 2022
    Publication date: August 18, 2022
    Inventors: Kuo-Ming Wu, Ching-Chun Wang, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Min-Feng Kao, Yung-Lung Lin, Shih-Han Huang, I-Nan Chen
  • Publication number: 20220254739
    Abstract: A semiconductor article which includes a semiconductor substrate, a back end of the line (BEOL) wiring portion on the semiconductor substrate, a through silicon via and a guard ring. The semiconductor substrate is made of a semiconductor material. The BEOL wiring portion includes a plurality of wiring layers having electrically conductive wiring and electrical insulating material. The through silicon via provides a conductive path through the BEOL wiring portion and the semiconductor substrate. The guard ring surrounds the through silicon via in the BEOL wiring portion and in some embodiments in the semiconductor substrate.
    Type: Application
    Filed: September 21, 2021
    Publication date: August 11, 2022
    Inventors: Min-Feng KU, Yao-Chun CHUANG, Ching-Pin LIN, Cheng-Chien LI
  • Patent number: 11410972
    Abstract: A method for manufacturing three-dimensional (3D) integrated circuit (IC) is provided. In some embodiments, a second IC die is formed and bonded to a first IC die by a first bonding structure. A third IC die is formed and bonded to the second IC die by a second bonding structure. The second bonding structure is formed between back sides of the second IC die and the third IC die opposite to corresponding interconnect structures and comprises a first TSV (through substrate via) disposed through a second substrate of the second IC die and a second TSV disposed through a third substrate of the third IC die. In some further embodiments, the second bonding structure is formed by forming conductive features with oppositely titled sidewalls disposed between the first TSV and the second TSV.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: August 9, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Ming Wu, Ching-Chun Wang, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Min-Feng Kao, Yung-Lung Lin, Shih-Han Huang, I-Nan Chen
  • Patent number: 11404534
    Abstract: Some embodiments relate to a semiconductor structure including a semiconductor substrate having a frontside surface and a backside surface. An interconnect structure is disposed over the frontside surface. The interconnect structure includes a plurality of metal lines and vias that operably couple semiconductor transistor devices disposed in or on the frontside surface of the semiconductor substrate to one another. A trench is disposed in the backside surface of the semiconductor substrate. The trench is filled with an inner capacitor electrode, a capacitor dielectric layer overlying the inner capacitor electrode, and an outer capacitor electrode overlying the capacitor dielectric layer.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: August 2, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu
  • Publication number: 20220238568
    Abstract: Some embodiments relate to an image sensor. The image sensor includes a semiconductor substrate including a pixel region and a peripheral region. A backside isolation structure extends into a backside of the semiconductor substrate and laterally surrounds the pixel region. The backside isolation structure includes a metal core, and a dielectric liner separates the metal core from the semiconductor substrate. A conductive feature is disposed over a front side of the semiconductor substrate. A through substrate via extends from the backside of the semiconductor substrate through the peripheral region to contact the conductive feature. The through substrate via is laterally offset from the backside isolation structure. A conductive bridge is disposed beneath the backside of the semiconductor substrate and electrically couples the metal core of the backside isolation structure to the through substrate via.
    Type: Application
    Filed: June 2, 2021
    Publication date: July 28, 2022
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Wen-Chang Kuo, Sheng-Chau Chen, Feng-Chi Hung, Sheng-Chan Li
  • Publication number: 20220231058
    Abstract: An image sensor includes a pixel and an isolation structure. The pixel includes a photosensitive region and a circuitry region next to the photosensitive region. The isolation structure is located over the pixel, where the isolation structure includes a conductive grid and a dielectric structure covering a sidewall of the conductive grid, and the isolation structure includes an opening or recess overlapping the photosensitive region. The isolation structure surrounds a peripheral region of the photosensitive region.
    Type: Application
    Filed: May 24, 2021
    Publication date: July 21, 2022
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Wen-Chang Kuo, Sheng-Chau Chen, Feng-Chi Hung, Sheng-Chan Li
  • Publication number: 20220223635
    Abstract: A semiconductor device includes a substrate having a front side and a back side opposite to each other. A plurality of photodetectors is disposed in the substrate within a pixel region. An isolation structure is disposed within the pixel region and between the photodetectors. The isolation structure includes a back side isolation structure extending from the back side of the substrate to a position in the substrate. A conductive plug structure is disposed in the substrate within a periphery region. A conductive cap is disposed on the back side of the substrate and extends from the pixel region to the periphery region and electrically connects the back side isolation structure to the conductive plug structure. A conductive contact lands on the conductive plug structure, and is electrically connected to the back side isolation structure through the conductive plug structure and the conductive cap.
    Type: Application
    Filed: May 17, 2021
    Publication date: July 14, 2022
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Hsing-Chih Lin, Feng-Chi Hung, Shyh-Fann Ting
  • Publication number: 20220223498
    Abstract: Some embodiments relate to a semiconductor structure including a semiconductor substrate, and n interconnect structure disposed over the semiconductor substrate. The interconnect structure includes a dielectric structure and a plurality of metal lines that are stacked over one another in the dielectric structure. A through substrate via (TSV) extends through the semiconductor substrate to contact a metal line of the plurality of metal lines. A protective sleeve is disposed along outer sidewalls of the TSV and separates the outer sidewalls of the TSV from the dielectric structure of the interconnect structure.
    Type: Application
    Filed: January 8, 2021
    Publication date: July 14, 2022
    Inventors: Zheng-Xun Li, Min-Feng Kao, Hsing-Chih Lin, Jen-Cheng Liu, Dun-Nian Yaung
  • Patent number: 11387167
    Abstract: Present disclosure provides a semiconductor structure, including a semiconductor substrate, a first metal layer, and a through substrate via (TSV). The semiconductor substrate has an active side. The first metal layer is closest to the active side of the semiconductor substrate, and the first metal layer has a first continuous metal feature. The TSV is extending from the semiconductor substrate to the first continuous metal feature. A width of the TSV at the first metal layer is wider than a width of the first continuous metal feature. Present disclosure also provides a method for manufacturing the semiconductor structure described herein.
    Type: Grant
    Filed: July 3, 2020
    Date of Patent: July 12, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Ching-Chun Wang, Kuan-Chieh Huang, Hsing-Chih Lin, Yi-Shin Chu
  • Publication number: 20220216185
    Abstract: In some embodiments, the present disclosure relates to a 3D integrated circuit (IC) stack that includes a first IC die bonded to a second IC die. The first IC die includes a first semiconductor substrate, a first interconnect structure arranged on a frontside of the first semiconductor substrate, and a first bonding structure arranged over the first interconnect structure. The second IC die includes a second semiconductor substrate, a second interconnect structure arranged on a frontside of the second semiconductor substrate, and a second bonding structure arranged on a backside of the second semiconductor substrate. The first bonding structure faces the second bonding structure. Further, the 3D IC stack includes a first backside contact that extends from the second bonding structure to the backside of the second semiconductor substrate and is thermally coupled to at least one of the first or second interconnect structures.
    Type: Application
    Filed: March 24, 2022
    Publication date: July 7, 2022
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Yi-Shin Chu, Ping-Tzu Chen, Che-Wei Chen