Patents by Inventor Min Feng

Min Feng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220208651
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip structure. The integrated chip structure includes a standard contact disposed within a dielectric structure on a substrate. An oversized contact is disposed within the dielectric structure and is laterally separated from the standard contact. The oversized contact has a larger width than the standard contact. An interconnect wire vertically contacts the oversized contact. A through-substrate via (TSV) vertically extends through the substrate. The TSV physically and vertically contacts the oversized contact or the interconnect wire. The TSV vertically overlaps the oversized contact or the interconnect wire over a non-zero distance.
    Type: Application
    Filed: March 16, 2022
    Publication date: June 30, 2022
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Yi-Shin Chu, Ping-Tzu Chen
  • Publication number: 20220157512
    Abstract: A structure for forming a 3D-coil transponder, wherein each group of leads is encapsulated by a separated insulating molding body and a magnetic body disposed over the plurality of separated groups of leads, wherein each said insulating molding body does not extend across two or more groups of leads.
    Type: Application
    Filed: May 12, 2021
    Publication date: May 19, 2022
    Inventors: Min-Feng Chung, Kuan Yu Chiu, Ching Hsiang Yu
  • Publication number: 20220148919
    Abstract: A memory device is provided. The memory device includes a substrate, a stacked structure, and a contact. The substrate includes a memory array region and a staircase region. The stacked structure is located on the substrate in the memory array region and the staircase region. The stacked structure includes a plurality of conductive layers and a plurality of insulating layers alternately stacked on each other. Each of the plurality of conductive layers includes a main body and an end part. The main body is located in the memory array region and extends to the staircase region. The end part is connected to the main body and is located in the staircase region. A thickness of the end part is greater than a thickness of the main body. The contact lands on and is connected to the end part.
    Type: Application
    Filed: November 12, 2020
    Publication date: May 12, 2022
    Applicant: MACRONIX International Co., Ltd.
    Inventor: Min-Feng Hung
  • Publication number: 20220148793
    Abstract: A shielding layer that is made of conductive and magnetic material is used to encapsulate the bare metal wire of a coil of an inductor to shield the coil from the external magnetic field and make the resistance and the power loss of the inductor lower.
    Type: Application
    Filed: January 25, 2022
    Publication date: May 12, 2022
    Inventors: Shuen-Chang Hung, Min-Feng Chung
  • Patent number: 11322481
    Abstract: A three-dimensional (3D) integrated circuit (IC) is provided. In some embodiments, a second IC die is bonded to a first IC die by a first bonding structure. A third IC die is bonded to the second IC die by a second bonding structure. The second bonding structure is arranged between back sides of the second IC die and the third IC die opposite to corresponding interconnect structures and comprises a first TSV (through substrate via) disposed through a second substrate of the second IC die and a second TSV disposed through a third substrate of the third IC die. The second bonding structure further comprises conductive features with oppositely titled sidewalls disposed between the first TSV and the second TSV.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: May 3, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Ming Wu, Ching-Chun Wang, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Min-Feng Kao, Yung-Lung Lin, Shih-Han Huang, I-Nan Chen
  • Publication number: 20220130603
    Abstract: At least one shielding layer made of conductive material is formed on a body of an inductor, wherein at least one portion of the top surface of the body is exposed from the shielding layer, so as to provide an exhaust channel for moisture inside the body to leak to the outside of the body, thereby preventing the residual moisture from deforming the inductor due to thermal expansion.
    Type: Application
    Filed: October 22, 2021
    Publication date: April 28, 2022
    Inventors: CHI-HSUN LEE, Min-Feng Chung
  • Publication number: 20220130599
    Abstract: A recess is formed on a bottom surface of a body of an inductor, wherein an electrode for connecting to a ground is disposed in the recess, and an electrode connecting with a coil of the inductor is disposed on a protruding portion adjacent to the recess.
    Type: Application
    Filed: October 22, 2021
    Publication date: April 28, 2022
    Inventors: CHI-HSUN LEE, Min-Feng Chung
  • Patent number: 11289455
    Abstract: In some embodiments, the present disclosure relates to a 3D integrated circuit (IC) stack that includes a first IC die bonded to a second IC die. The first IC die includes a first semiconductor substrate, a first interconnect structure arranged on a frontside of the first semiconductor substrate, and a first bonding structure arranged over the first interconnect structure. The second IC die includes a second semiconductor substrate, a second interconnect structure arranged on a frontside of the second semiconductor substrate, and a second bonding structure arranged on a backside of the second semiconductor substrate. The first bonding structure faces the second bonding structure. Further, the 3D IC stack includes a first backside contact that extends from the second bonding structure to the backside of the second semiconductor substrate and is thermally coupled to at least one of the first or second interconnect structures.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: March 29, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Yi-Shin Chu, Ping-Tzu Chen, Che-Wei Chen
  • Publication number: 20220093571
    Abstract: In some embodiments, the present disclosure relates to method of forming an integrated circuit, including forming a semiconductor device on a frontside of a semiconductor substrate; depositing a dielectric layer over a backside of the semiconductor substrate; patterning the dielectric layer to form a first opening in the dielectric layer so that the first opening exposes a surface of the backside of the semiconductor substrate; depositing a glue layer having a first thickness over the first opening; filling the first opening with a first material to form a backside contact that is separated from the semiconductor substrate by the glue layer; and depositing more dielectric layers, bonding contacts, and bonding wire layers over the dielectric layer to form a second bonding structure on the backside of the semiconductor substrate, so that the backside contact is coupled to the bonding contacts and the bonding wire layers.
    Type: Application
    Filed: December 1, 2021
    Publication date: March 24, 2022
    Inventors: Ping-Tzu Chen, Hsing-Chih Lin, Min-Feng Kao
  • Patent number: 11282769
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip structure. The integrated chip structure includes a standard via disposed on a first side of a substrate. An oversized via is disposed on the first side of the substrate and is laterally separated from the standard via. The oversized via has a larger width than the standard via. An interconnect wire vertically contacting the oversized via. A through-substrate via (TSV) extends from a second side of the substrate, and through the substrate, to physically contact the oversized via or the interconnect wire. The TSV has a minimum width that is smaller than a width of the oversized via.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: March 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Yi-Shin Chu, Ping-Tzu Chen
  • Patent number: 11270834
    Abstract: A shielding layer that is made of a conductive and magnetic material is used to encapsulate the bare metal wire of a coil of an inductor so as to shield the coil from external magnetic field and make the resistance and the power loss of the inductor lower.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: March 8, 2022
    Assignee: CYNTEC CO., LTD.
    Inventors: Shuen-Chang Hung, Min-Feng Chung
  • Publication number: 20220052072
    Abstract: A method for forming a memory device is provided. The memory device includes a substrate; a stack including a plurality of conductive layers and a plurality of insulating layers being alternatively stacked on the substrate; a plurality of memory structures formed on the substrate and penetrating the stack; a plurality of isolation structures formed on the substrate and penetrating the stack, wherein the isolation structures dividing the memory structures into a plurality of first memory structures and a plurality of second memory structures; and a plurality of common source pillars formed on the substrate and penetrating the stack, wherein the common source pillars directly contact the isolation structures.
    Type: Application
    Filed: October 27, 2021
    Publication date: February 17, 2022
    Inventors: Min-Feng HUNG, Chia-Jung CHIU, Guan-Ru LEE
  • Patent number: 11249803
    Abstract: A computer-implemented method includes obtaining a usecase specification and a usecase runtime specification corresponding to the usecase. The usecase includes a plurality of applications each being associated with a micro-service providing a corresponding functionality within the usecase for performing a task. The method further includes determining that at least one instance of the at least one of the plurality of applications can be reused during execution of the usecase based on the usecase specification and the usecase runtime specification, and reusing the at least one instance during execution of the usecase.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: February 15, 2022
    Inventors: Yi Yang, Kunal Rao, Srimat Chakradhar, Giuseppe Coviello, Min Feng, Murugan Sankaradas
  • Patent number: 11241641
    Abstract: A filter device with a spirally flushing function with a head having a filter flask main body and a water inlet hole connected with a water inlet passage, a water outlet hole connected with a water outlet passage, and a flushing hole connected with a flushing passage. A filter element casing arranged outside the filter element, and has a plurality of filter element casing water inlets. A flow divider arranged outside the filter element casing and covering a portion of an upper end of the filter element casing. A filter element end cap fixed to the top of the filter element and having a water outlet, which penetrates through the flow divider and is connected with the water outlet passage. Effectively improved flushing effect, and greatly prolonged service life of the filter element is experienced.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: February 8, 2022
    Assignee: Kunshan Ecowater Systems Co., Ltd.
    Inventors: Miaoqiang Mei, Fei Xue, Chunxia Xu, Rui Feng, Min Feng
  • Patent number: 11244925
    Abstract: The present disclosure relates to a method of forming a semiconductor device structure. The method may be performed by forming a gate structure along a first side of a semiconductor substrate. The semiconductor substrate is thinned. Thinning the semiconductor substrate causes defects to form along a second side of the semiconductor substrate opposing the first side of the semiconductor substrate. Dopants are implanted into the second side of the semiconductor substrate after thinning the semiconductor substrate. The semiconductor substrate is annealed to form a doped layer after implanting the dopants. The doped layer is formed along the second side of the semiconductor substrate.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: February 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Jeng-Shyan Lin, Hsun-Ying Huang
  • Patent number: 11222814
    Abstract: An integrated circuit (IC) provides high performance and high functional density. A first back-end-of-line (BEOL) interconnect structure and a second BEOL interconnect structure are respectively under and over a semiconductor substrate. A first electronic device and a second electronic device are between the semiconductor substrate and respectively a bottom of the first BEOL interconnect structure and a top of the second BEOL interconnect structure. A through substrate via (TSV) extends through the semiconductor substrate, from the first BEOL interconnect structure to the second BEOL interconnect structure. A method for manufacturing the IC is also provided.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: January 11, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Kuan-Chieh Huang
  • Patent number: 11217478
    Abstract: An integrated circuit (IC) provides high performance and high functional density. A first back-end-of-line (BEOL) interconnect structure and a second BEOL interconnect structure are respectively under and over a semiconductor substrate. A first electronic device and a second electronic device are between the semiconductor substrate and respectively a bottom of the first BEOL interconnect structure and a top of the second BEOL interconnect structure. A through substrate via (TSV) extends through the semiconductor substrate, from the first BEOL interconnect structure to the second BEOL interconnect structure. A method for manufacturing the IC is also provided.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: January 4, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Kuan-Chieh Huang
  • Publication number: 20210391237
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip structure. The integrated chip structure includes a standard via disposed on a first side of a substrate. An oversized via is disposed on the first side of the substrate and is laterally separated from the standard via. The oversized via has a larger width than the standard via. An interconnect wire vertically contacting the oversized via. A through-substrate via (TSV) extends from a second side of the substrate, and through the substrate, to physically contact the oversized via or the interconnect wire. The TSV has a minimum width that is smaller than a width of the oversized via.
    Type: Application
    Filed: June 11, 2020
    Publication date: December 16, 2021
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Yi-Shin Chu, Ping-Tzu Chen
  • Publication number: 20210391302
    Abstract: In some embodiments, the present disclosure relates to a 3D integrated circuit (IC) stack that includes a first IC die bonded to a second IC die. The first IC die includes a first semiconductor substrate, a first interconnect structure arranged on a frontside of the first semiconductor substrate, and a first bonding structure arranged over the first interconnect structure. The second IC die includes a second semiconductor substrate, a second interconnect structure arranged on a frontside of the second semiconductor substrate, and a second bonding structure arranged on a backside of the second semiconductor substrate. The first bonding structure faces the second bonding structure. Further, the 3D IC stack includes a first backside contact that extends from the second bonding structure to the backside of the second semiconductor substrate and is thermally coupled to at least one of the first or second interconnect structures.
    Type: Application
    Filed: June 11, 2020
    Publication date: December 16, 2021
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Yi-Shin Chu, Ping-Tzu Chen, Che-Wei Chen
  • Patent number: D946108
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: March 15, 2022
    Assignee: KUNSHAN ECOWATER SYSTEMS CO., LTD.
    Inventors: Miaoqiang Mei, Fei Xue, Chunxia Xu, Rui Feng, Min Feng