Patents by Inventor Nozomu Harada

Nozomu Harada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220130842
    Abstract: In formation of an SRAM cell, a band-shaped contact hole C3 is formed that does not overlap, in plan view. N+ layers 32a, 32c, 32d, and 32f formed on and at outer peripheries of the top portions of Si pillars 6a, 6c, 6d, and 6f, that partly overlaps W layers 33b and 33e on P+ layers 32b and 32e connected to the top portions of Si pillars 6b and 6e, that is connected in both the X direction and the Y direction, and that extends in the Y direction. A power supply wiring metal layer Vdd that connects the P+ layers 32b and 32e through the contact hole C3 is formed. After formation of the power supply wiring metal layer Vdd, a word wiring metal layer WL is formed so as to be orthogonal to the power supply wiring metal layer Vdd in plan view.
    Type: Application
    Filed: December 30, 2021
    Publication date: April 28, 2022
    Inventors: Fujio MASUOKA, Nozomu HARADA
  • Patent number: 11309426
    Abstract: An SGT circuit includes a first conductor layer which contains a semiconductor atom, which is in contact with an N+ region and a P+ region of a Si pillar, or a TiN layer, and whose outer circumference is located outside an outer circumference of a SiO2 layer in plan view, and a second conductor layer which contains a metal atom, which is connected to an outer periphery of the first conductor layer, and which extends in a horizontal direction.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: April 19, 2022
    Assignee: Unisantis Electronics Singapore Pte. Ltd.
    Inventors: Fujio Masuoka, Nozomu Harada
  • Publication number: 20220093611
    Abstract: A gate TiN layer of adjacent Si pillars among Si pillars contacts at entire channel length in a vertical direction. SiO2 layers are formed, surrounding the Si pillars, and mask material layers on top thereof, and being spaced from each other. Then, a SiN layer is formed surrounding the SiO2 layers. Then, the mask material layers and the SiO2 layers are removed. Then, a P+ layer and N+ layers which upper surfaces are lower than an upper surface position of the SiN layer are formed surrounding each top of the Si pillars by selective epitaxial crystal growth method.
    Type: Application
    Filed: December 1, 2021
    Publication date: March 24, 2022
    Inventors: Fujio MASUOKA, Nozomu HARADA
  • Patent number: 11282958
    Abstract: An SGT is formed that includes Si pillars. The SGT includes WSi2 layers serving as wiring alloy layers and constituted by first alloy regions that are connected to the entire peripheries of impurity regions serving as sources or drains located in lower portions of the Si pillars, are formed in a self-aligned manner with the impurity regions in a tubular shape, and contain the same impurity atom as the impurity regions and a second alloy region that is partly connected to the peripheries of the first alloy regions and contains the same impurity atom as the impurity regions.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: March 22, 2022
    Assignee: Unisantis Electronics Singapore Pte. Ltd.
    Inventors: Fujio Masuoka, Nozomu Harada
  • Publication number: 20220028869
    Abstract: In a SRAM cell, a Si pillar, which is a selection SGT in upper row of Si pillars, is located on the left end in X direction. A Si pillar, which is a selection SGT in lower row of Si pillars, is located on the right end. The Si pillar of the lower row is present in a width of an area extended from a contact hole in Y direction in planar view. Then, the Si pillar of the upper row is present in a width of an area extended from a contact hole in Y direction in planar view. In each of the upper row and the lower row, a TiN layer, which is a gate electrode for a loading SGT and a driving SGT, is formed to contact at side surface of entire gate region in a vertical direction between the corresponding Si pillars.
    Type: Application
    Filed: October 4, 2021
    Publication date: January 27, 2022
    Inventors: Fujio MASUOKA, Nozomu HARADA, Yisuo Li
  • Patent number: 11211488
    Abstract: An SGT is formed that includes Si pillars. The SGT includes WSi2 layers serving as wiring alloy layers and constituted by first alloy regions that are connected to the entire peripheries of impurity regions serving as sources or drains located in lower portions of the Si pillars, are formed in a self-aligned manner with the impurity regions in a tubular shape, and contain the same impurity atom as the impurity regions and a second alloy region that is partly connected to the peripheries of the first alloy regions and contains the same impurity atom as the impurity regions.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: December 28, 2021
    Assignee: Unisantis Electronics Singapore Pte. Ltd.
    Inventors: Fujio Masuoka, Nozomu Harada
  • Patent number: 11183582
    Abstract: The method for producing a pillar-shaped semiconductor device includes a step of providing a structure that includes, on an i layer substrate, a Si pillar and an impurity region located in a lower portion of the Si pillar and serving as a source or a drain, a step of forming a SiO2 layer that extends in a horizontal direction and is connected to an entire periphery of the impurity region in plan view, a step of forming a SiO2 layer on the SiO2 layer such that the SiO2 layer surrounds the Si pillar in plan view, a step of forming a resist layer that is partly connected to the SiO2 layer in plan view, and a step of forming a SiO2 layer by etching the SiO2 layer below the SiO2 layer and the resist layer using the SiO2 layer and the resist layer as masks.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: November 23, 2021
    Assignee: Unisantis Electronics Singapore Pte. Ltd.
    Inventors: Fujio Masuoka, Nozomu Harada
  • Publication number: 20210358754
    Abstract: A second band-like mask material layer having a first band-like mask material layer of a same planar shape on its top is formed on a mask material layer on a semiconductor layer. Then, fourth band-like mask material layers having third band-like mask material layers of same planar shape on their top are formed on both side surfaces of the first and second band-like mask material layers. Sixth band-like mask material layers having fifth band-like mask material layers of same planar shape on their top are formed on the outside thereof. Then, an orthogonal band-like mask material layer is formed on the first band-like mask material layer, in a direction orthogonal to a direction in which the first band-like mask material layer extends. Semiconductor pillars are formed on overlapping areas of this orthogonal band-like mask material layer and the second and sixth band-like mask material layers by etching the semiconductor layer.
    Type: Application
    Filed: June 11, 2021
    Publication date: November 18, 2021
    Inventors: Fujio MASUOKA, Nozomu HARADA, Yisuo LI
  • Publication number: 20210242028
    Abstract: A band-shaped Si pillar having a mask material layer on the top portion thereof is formed on a P+ layer. SiGe layers having mask material layers on the top portions thereof are then formed in contact with the side surfaces of the band-shaped Si pillar and the surfaces of N+ layers and the P+ layer. Si layers having mask material layers on the top portions thereof are then formed in contact with the side surfaces of the SiGe layers and the surfaces of the N+ layers. The outer peripheries of the bottom portions of the Si layers are then removed using the mask material layers as a mask to form band-shaped Si pillars. The mask material layers and the SiGe layers are then removed. Si pillars separated in the Y direction are then formed in the band-shaped Si pillars.
    Type: Application
    Filed: March 29, 2021
    Publication date: August 5, 2021
    Inventors: Fujio MASUOKA, Nozomu HARADA
  • Publication number: 20210119017
    Abstract: A method for producing a pillar-shaped semiconductor device having a semiconductor pillar on a semiconductor substrate. A first material layer is formed surrounding the semiconductor pillar and the semiconductor substrate is etched using the first material layer as a mask to form a semiconductor-pillar base part under the semiconductor pillar that surrounds the semiconductor pillar in plan view. A second material layer is formed to cover an upper portion of the semiconductor-pillar base part and the first material layer. An oxidation-layer base part is formed at a lower portion of the semiconductor base part by oxidizing the semiconductor substrate and a lower portion of the semiconductor-pillar base part using the second material layer as an oxidation-resistant mask. The semiconductor pillar is within the oxidation-layer base part in plan view, and an upper surface of the oxidation-layer base part is lower than an upper surface of the semiconductor-pillar base part along a vertical direction.
    Type: Application
    Filed: December 2, 2020
    Publication date: April 22, 2021
    Inventors: Fujio MASUOKA, Nozomu HARADA
  • Publication number: 20210104628
    Abstract: A SiO2 layer is disposed in the bottom portion of a Si pillar and on an i-layer substrate. A gate HfO2 layer 11b is disposed so as to surround the side surface of the Si pillar, and a gate TiN layer is disposed so as to surround the HfO2 layer. P+ layers are disposed that contain an acceptor impurity at a high concentration, serve as a source and a drain, and are simultaneously or separately formed by a selective epitaxial crystal growth method on the exposed side surface of the bottom portion of and on the top portion of the Si pillar. Thus, an SGT is formed on the i-layer substrate.
    Type: Application
    Filed: November 24, 2020
    Publication date: April 8, 2021
    Inventors: Fujio MASUOKA, Nozomu HARADA, Yoshiaki KIKUCHI
  • Patent number: 10930761
    Abstract: A Si substrate is etched through a first mask material layer formed on the Si substrate and serving as a mask, to form a Si pillar on a Si substrate. Subsequently, a second mask material layer formed so as to surround the side surface of the Si pillar is used as a mask to form a Si-pillar base part surrounding the Si pillar. Subsequently, the first and second mask material layers are used as masks to form a SiO2 layer so as to occupy the whole section of the Si-pillar base part and connect to the Si substrate positioned in a region around the Si-pillar base part. Recessed portions are formed in the upper and lower regions of the SiO2 layer. Subsequently, on the SiO2 layer, an SGT is formed so as to include a gate insulating HfO2 layer surrounding the Si pillar, a gate conductor TiN layer, N+ layers serving as the source or drain within the Si pillar, and a Si pillar serving as the channel between the N+ layers.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: February 23, 2021
    Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.
    Inventors: Fujio Masuoka, Nozomu Harada
  • Publication number: 20200373415
    Abstract: A SiO2 layer 5 is formed in the bottom portion of a Si pillar 3 and on an i-layer substrate 2. Subsequently, a gate HfO2 layer 11b is formed so as to surround the side surface of the Si pillar 3, and a gate TiN layer 12b is formed so as to surround the HfO2 layer 11b. Subsequently, P+ layers 18 and 32 containing an acceptor impurity at a high concentration and serving as a source and a drain are simultaneously or separately formed by a selective epitaxial crystal growth method on the exposed side surface of the bottom portion of and on the top portion of the Si pillar 3. Thus, an SGT is formed on the i-layer substrate 2.
    Type: Application
    Filed: August 13, 2020
    Publication date: November 26, 2020
    Inventors: Fujio MASUOKA, Nozomu HARADA, Yoshiaki KIKUCHI
  • Patent number: 10840155
    Abstract: Regions including SiO2 layers, Si3N4 layers, and SiO2 layers, and C layers and SiO2 layers, whose two ends in Y-Y? direction are located on the SiO2 layers and two ends in X-X? direction are coincident with the rectangular SiO2 layers, are formed on an i-layer. The i-layer is etched using the SiO2 layers as masks to form Si pillar bases, and the C layers and the SiO2 layers are removed. Thereafter, the SiO2 layers are formed into a circular shape by isotropic etching using the Si3N4 layers as masks, and Si pillars are formed on the Si pillar bases using the circular SiO2 layers as masks.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: November 17, 2020
    Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.
    Inventors: Fujio Masuoka, Nozomu Harada
  • Patent number: 10825822
    Abstract: In an SRAM cell circuit, an N+ layer 12a and a P+ layer 13a, which are present between first gate connection W layers 22a and 22b connecting to gate TiN layers 23a and 23b in plan view, which connect to the bottom portions of Si pillars 11a and 11b, and which extend in the horizontal direction, connect through a second gate connection W layer 29a to a first gate connection W layer 22c, which connects to the gate TiN layers 23a and 23b and extend in the horizontal direction. The second gate connection W layer 29a has a bottom portion within the first gate connection W layer 22c, and has an upper surface positioned lower than the upper surfaces of the gate TiN layers 23a to 23f and the first gate connection W layers 22a to 22d.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: November 3, 2020
    Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.
    Inventors: Fujio Masuoka, Nozomu Harada, Hiroki Nakamura, Min Soo Kim, Zheng Tao
  • Patent number: 10734391
    Abstract: A first contact hole is formed so as to extend to a NiSi layer as a lower wiring conductor layer connecting to an N+ layer of an SGT formed within a Si pillar, and so as to extend through a NiSi layer as an upper wiring conductor layer connecting to a gate TiN layer, and a NiSi layer as an intermediate wiring conductor layer connecting to an N+ layer. A second contact hole is formed so as to extend to the NiSi layer, and surround, in plan view, the first contact hole. An insulating SiO2 layer is formed on a side surface of the NiSi layer. A wiring metal layer in the contact holes connects the NiSi layer and the NiSi layer to each other.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: August 4, 2020
    Assignee: Unisantis Electronics Singapore Pte. Ltd.
    Inventors: Fujio Masuoka, Nozomu Harada
  • Publication number: 20200227553
    Abstract: An SGT is formed that includes Si pillars. The SGT includes WSi2 layers serving as wiring alloy layers and constituted by first alloy regions that are connected to the entire peripheries of impurity regions serving as sources or drains located in lower portions of the Si pillars, are formed in a self-aligned manner with the impurity regions in a tubular shape, and contain the same impurity atom as the impurity regions and a second alloy region that is partly connected to the peripheries of the first alloy regions and contains the same impurity atom as the impurity regions.
    Type: Application
    Filed: March 27, 2020
    Publication date: July 16, 2020
    Inventors: Fujio MASUOKA, Nozomu HARADA
  • Patent number: 10658371
    Abstract: A method for producing a pillar-shaped semiconductor device includes, forming a first semiconductor pillar, a second semiconductor pillar, and a third semiconductor pillar on a substrate. A gate insulating layer and gate conductor layer are formed surrounding each of the pillars and impurity regions are formed in each pillar. The gate conductor layer is selectively processed to form gate conductors around the pillars and to interconnect the gate conductors.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: May 19, 2020
    Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.
    Inventors: Fujio Masuoka, Nozomu Harada
  • Patent number: 10651189
    Abstract: A method for producing a pillar-shaped semiconductor memory device includes forming a mask on a semiconductor substrate and etching to form a semiconductor pillar on the semiconductor substrate. A tunnel insulating layer is formed and a data charge storage insulating layer is formed so as to surround the tunnel insulating layer, and a first conductor layer and a second interlayer insulating layer are formed on the semiconductor pillar. A stacked material layer is formed in a direction perpendicular to an upper surface of the semiconductor substrate, the stacked material layer including the first conductor layer and the second interlayer insulating layer. Data writing and erasing due to charge transfer between the semiconductor pillar and the data charge storage insulating layer through the tunnel insulating layer is performed by application of a voltage to the first conductor layer.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: May 12, 2020
    Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.
    Inventors: Fujio Masuoka, Nozomu Harada
  • Patent number: 10651181
    Abstract: The method for producing a pillar-shaped semiconductor device includes a step of forming a tubular SiO2 layer that surrounds side surfaces of a P+ layer 38a and N+ layers 38b and 8c formed on a Si pillar 6b by epitaxial crystal growth, forming an AlO layer 51 on a periphery of the SiO2 layer, forming a tubular contact hole by etching the tubular SiO2 layer using the AlO layer 51 as a mask, and filling the contact hole with W layers 52c, 52d, and 52e to form tubular W layers 52c, 52d, and 52e (including a buffer conductor layer) that have an equal width when viewed in plan and are in contact with side surfaces of the tops of the P+ layer 38a and the N+ layers 38b and 8c.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: May 12, 2020
    Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.
    Inventors: Fujio Masuoka, Nozomu Harada, Hiroki Nakamura, Phillipe Matagne, Yoshiaki Kikuchi