Patents by Inventor Nozomu Harada

Nozomu Harada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10651180
    Abstract: A method for producing a pillar-shaped semiconductor device includes steps of forming, on the side surface of an N+ layer (38b) of the top portion of a Si pillar (6b) and the side surface of the top portion of a W layer (43a), ring-shaped SiO2 layers and an AlO layer (51) in outer peripheral portions surrounding the ring-shaped SiO2 layers; etching the ring-shaped SiO2 layers through the AlO layer serving as a mask, to form ring-shaped contact holes; and filling the contact holes with W layers (52a, 52b), to form ring-shaped W layers (52a, 52d) being in contact with the side surface of the N+ layer (38b) and the side surface of the top portion of the W layer (43a), and having constant widths in plan view.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: May 12, 2020
    Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.
    Inventors: Fujio Masuoka, Nozomu Harada
  • Patent number: 10644151
    Abstract: A surround gate MOS transistor (SGT) includes a silicon pillar and tungsten silicide or cobalt silicide wiring alloy layers constituted by first alloy regions connected to the entire peripheries of impurity regions serving as sources or drains in lower portions of the silicon pillar. The first alloy regions are formed in a self-aligned manner with the impurity regions in a tubular shape, and contain the same impurity atoms as the impurity regions. A second alloy region is partly connected to the peripheries of the first alloy regions and contains the same impurity atoms as the impurity regions.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: May 5, 2020
    Assignee: Unisantis Electronics Singapore Pte. Ltd.
    Inventors: Fujio Masuoka, Nozomu Harada
  • Publication number: 20200119193
    Abstract: An SGT is formed that includes Si pillars. The SGT includes WSi2 layers serving as wiring alloy layers and constituted by first alloy regions that are connected to the entire peripheries of impurity regions serving as sources or drains located in lower portions of the Si pillars, are formed in a self-aligned manner with the impurity regions in a tubular shape, and contain the same impurity atom as the impurity regions and a second alloy region that is partly connected to the peripheries of the first alloy regions and contains the same impurity atom as the impurity regions.
    Type: Application
    Filed: December 16, 2019
    Publication date: April 16, 2020
    Inventors: Fujio MASUOKA, Nozomu HARADA
  • Publication number: 20200119166
    Abstract: The method for producing a pillar-shaped semiconductor device includes a step of providing a structure that includes, on an i layer substrate, a Si pillar and an impurity region located in a lower portion of the Si pillar and serving as a source or a drain, a step of forming a SiO2 layer that extends in a horizontal direction and is connected to an entire periphery of the impurity region in plan view, a step of forming a SiO2 layer on the SiO2 layer such that the SiO2 layer surrounds the Si pillar in plan view, a step of forming a resist layer that is partly connected to the SiO2 layer in plan view, and a step of forming a SiO2 layer by etching the SiO2 layer below the SiO2 layer and the resist layer using the SiO2 layer and the resist layer as masks.
    Type: Application
    Filed: December 6, 2019
    Publication date: April 16, 2020
    Inventors: Fujio MASUOKA, Nozomu HARADA
  • Patent number: 10593682
    Abstract: A method for producing a semiconductor memory device includes forming two Si pillars on a substrate. In the Si pillars, inverter circuits are formed. The inverter circuits include drive N-channel SGTs each including first and second N+ layers functioning as a source and a drain, and load SGTs each including first and second P+ layers functioning as a source and drain. Selection SGTs each including third and fourth N+ layers functioning as a source and a drain are formed above SiO2 layers disposed above the inverter circuits. The first N+ layer is connected to a ground wiring metal layer. The first P+ layers are connected to a power supply wiring metal layer through a NiSi layer. Gate TiN layers are connected to a word-line wiring metal layer through a NiSi layer. The third N+ layers are connected to an inverted bit-line wiring metal layer and a bit-line wiring metal layer.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: March 17, 2020
    Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.
    Inventors: Fujio Masuoka, Nozomu Harada
  • Patent number: 10553715
    Abstract: An SGT is formed that includes Si pillars. The SGT includes WSi2 layers serving as wiring alloy layers and constituted by first alloy regions that are connected to the entire peripheries of impurity regions serving as sources or drains located in lower portions of the Si pillars, are formed in a self-aligned manner with the impurity regions in a tubular shape, and contain the same impurity atom as the impurity regions and a second alloy region that is partly connected to the peripheries of the first alloy regions and contains the same impurity atom as the impurity regions.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: February 4, 2020
    Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.
    Inventors: Fujio Masuoka, Nozomu Harada
  • Publication number: 20200020812
    Abstract: An SGT circuit includes a first conductor layer which contains a semiconductor atom, which is in contact with an N+ region and a P+ region of a Si pillar, or a TiN layer, and whose outer circumference is located outside an outer circumference of a SiO2 layer in plan view, and a second conductor layer which contains a metal atom, which is connected to an outer periphery of the first conductor layer, and which extends in a horizontal direction.
    Type: Application
    Filed: September 24, 2019
    Publication date: January 16, 2020
    Inventors: Fujio MASUOKA, Nozomu HARADA
  • Patent number: 10535756
    Abstract: The method for producing a pillar-shaped semiconductor device includes a step of providing a structure that includes, on an i layer substrate, a Si pillar and an impurity region located in a lower portion of the Si pillar and serving as a source or a drain, a step of forming a SiO2 layer that extends in a horizontal direction and is connected to an entire periphery of the impurity region in plan view, a step of forming a SiO2 layer on the SiO2 layer such that the SiO2 layer surrounds the Si pillar in plan view, a step of forming a resist layer that is partly connected to the SiO2 layer in plan view, and a step of forming a SiO2 layer by etching the SiO2 layer below the SiO2 layer and the resist layer using the SiO2 layer and the resist layer as masks.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: January 14, 2020
    Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.
    Inventors: Fujio Masuoka, Nozomu Harada
  • Patent number: 10483376
    Abstract: A method for producing a semiconductor device includes depositing a first insulating film and a second insulating film on a planar semiconductor layer formed on a substrate; forming a first hole for forming a gate electrode in the second insulating film; filling the first hole with a first metal to form the gate electrode; forming a side wall formed of a third insulating film on an upper surface of the gate electrode and a side surface of the first hole; performing etching through, as a mask, the side wall formed of the third insulating film, to form a second hole in the gate electrode and the first insulating film; forming a gate insulating film on a side surface of the second hole; and epitaxially growing a semiconductor layer, within the second hole, on the planar semiconductor layer to form a first pillar-shaped semiconductor layer.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: November 19, 2019
    Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.
    Inventors: Fujio Masuoka, Hiroki Nakamura, Nozomu Harada
  • Publication number: 20190348526
    Abstract: A method for producing a semiconductor device includes depositing a first insulating film and a second insulating film on a planar semiconductor layer formed on a substrate; forming a first hole for forming a gate electrode in the second insulating film; filling the first hole with a first metal to form the gate electrode; forming a side wall formed of a third insulating film on an upper surface of the gate electrode and a side surface of the first hole; performing etching through, as a mask, the side wall formed of the third insulating film, to form a second hole in the gate electrode and the first insulating film; forming a gate insulating film on a side surface of the second hole; and epitaxially growing a semiconductor layer, within the second hole, on the planar semiconductor layer to form a first pillar-shaped semiconductor layer.
    Type: Application
    Filed: July 24, 2019
    Publication date: November 14, 2019
    Inventors: Fujio MASUOKA, Hiroki NAKAMURA, Nozomu HARADA
  • Patent number: 10453941
    Abstract: A method for producing a semiconductor device includes depositing a first insulating film and a second insulating film on a planar semiconductor layer formed on a substrate; forming a first hole for forming a gate electrode in the second insulating film; filling the first hole with a first metal to form the gate electrode; forming a side wall formed of a third insulating film on an upper surface of the gate electrode and a side surface of the first hole; performing etching through, as a mask, the side wall formed of the third insulating film, to form a second hole in the gate electrode and the first insulating film; forming a gate insulating film on a side surface of the second hole; and epitaxially growing a semiconductor layer, within the second hole, on the planar semiconductor layer to form a first pillar-shaped semiconductor layer.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: October 22, 2019
    Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.
    Inventors: Fujio Masuoka, Hiroki Nakamura, Nozomu Harada
  • Publication number: 20190295900
    Abstract: Regions including SiO2 layers, Si3N4 layers, and SiO2 layers, and C layers and SiO2 layers, whose two ends in Y-Y? direction are located on the SiO2 layers and two ends in X-X? direction are coincident with the rectangular SiO2 layers, are formed on an i-layer. The i-layer is etched using the SiO2 layers as masks to form Si pillar bases, and the C layers and the SiO2 layers are removed. Thereafter, the SiO2 layers are formed into a circular shape by isotropic etching using the Si3N4 layers as masks, and Si pillars are formed on the Si pillar bases using the circular SiO2 layers as masks.
    Type: Application
    Filed: April 10, 2019
    Publication date: September 26, 2019
    Inventors: Fujio MASUOKA, Nozomu HARADA
  • Patent number: 10410932
    Abstract: A method for producing a pillar-shaped semiconductor device includes forming, above a NiSi layer serving as a lower wiring conductor layer and connecting to an N+ layer of an SGT formed within a Si pillar, a first conductor W layer that extends through a NiSi layer serving as an upper wiring conductor layer and connecting to a gate TiN layer and that extends through a NiSi layer serving as an intermediate wiring conductor layer and connecting to an N+ layer; forming an insulating SiO2 layer between the NiSi layer and the W layer; and forming a second conductor W layer so as to surround the W layer and have its bottom at the upper surface layer of the NiSi layer, to achieve connection between the NiSi layer and the NiSi layer.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: September 10, 2019
    Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.
    Inventors: Fujio Masuoka, Nozomu Harada
  • Publication number: 20190259876
    Abstract: An SGT is formed that includes Si pillars. The SGT includes WSi2 layers serving as wiring alloy layers and constituted by first alloy regions that are connected to the entire peripheries of impurity regions serving as sources or drains located in lower portions of the Si pillars, are formed in a self-aligned manner with the impurity regions in a tubular shape, and contain the same impurity atom as the impurity regions and a second alloy region that is partly connected to the peripheries of the first alloy regions and contains the same impurity atom as the impurity regions.
    Type: Application
    Filed: April 30, 2019
    Publication date: August 22, 2019
    Inventors: Fujio MASUOKA, Nozomu HARADA
  • Publication number: 20190252392
    Abstract: A first contact hole is formed so as to extend to a NiSi layer as a lower wiring conductor layer connecting to an N+ layer of an SGT formed within a Si pillar, and so as to extend through a NiSi layer as an upper wiring conductor layer connecting to a gate TiN layer, and a NiSi layer as an intermediate wiring conductor layer connecting to an N+ layer. A second contact hole is formed so as to extend to the NiSi layer, and surround, in plan view, the first contact hole. An insulating SiO2 layer is formed on a side surface of the NiSi layer. A wiring metal layer in the contact holes connects the NiSi layer and the NiSi layer to each other.
    Type: Application
    Filed: January 3, 2019
    Publication date: August 15, 2019
    Inventors: Fujio MASUOKA, Nozomu HARADA
  • Publication number: 20190237367
    Abstract: The method for producing a pillar-shaped semiconductor device includes a step of forming a tubular SiO2 layer that surrounds side surfaces of a P+ layer 38a and N+ layers 38b and 8c formed on a Si pillar 6b by epitaxial crystal growth, forming an AlO layer 51 on a periphery of the SiO2 layer, forming a tubular contact hole by etching the tubular SiO2 layer using the AlO layer 51 as a mask, and filling the contact hole with W layers 52c, 52d, and 52e to form tubular W layers 52c, 52d, and 52e (including a buffer conductor layer) that have an equal width when viewed in plan and are in contact with side surfaces of the tops of the P+ layer 38a and the N+ layers 38b and 8c.
    Type: Application
    Filed: April 2, 2019
    Publication date: August 1, 2019
    Inventors: Fujio MASUOKA, Nozomu HARADA, Hiroki NAKAMURA, Phillipe MATAGNE, Yoshiaki KIKUCHI
  • Publication number: 20190206880
    Abstract: A method for producing a semiconductor memory device includes forming two Si pillars on a substrate. In the Si pillars, inverter circuits are formed. The inverter circuits include drive N-channel SGTs each including first and second N+ layers functioning as a source and a drain, and load SGTs each including first and second P+ layers functioning as a source and drain. Selection SGTs each including third and fourth N+ layers functioning as a source and a drain are formed above SiO2 layers disposed above the inverter circuits. The first N+ layer is connected to a ground wiring metal layer. The first P+ layers are connected to a power supply wiring metal layer through a NiSi layer. Gate TiN layers are connected to a word-line wiring metal layer through a NiSi layer. The third N+ layers are connected to an inverted bit-line wiring metal layer and a bit-line wiring metal layer.
    Type: Application
    Filed: March 8, 2019
    Publication date: July 4, 2019
    Inventors: Fujio MASUOKA, Nozomu HARADA
  • Publication number: 20190181244
    Abstract: A Si substrate is etched through a first mask material layer formed on the Si substrate and serving as a mask, to form a Si pillar on a Si substrate. Subsequently, a second mask material layer formed so as to surround the side surface of the Si pillar is used as a mask to form a Si-pillar base part surrounding the Si pillar. Subsequently, the first and second mask material layers are used as masks to form a SiO2 layer so as to occupy the whole section of the Si-pillar base part and connect to the Si substrate positioned in a region around the Si-pillar base part. Recessed portions are formed in the upper and lower regions of the SiO2 layer. Subsequently, on the SiO2 layer, an SGT is formed so as to include a gate insulating HfO2 layer surrounding the Si pillar, a gate conductor TiN layer, N+ layers serving as the source or drain within the Si pillar, and a Si pillar serving as the channel between the N+ layers.
    Type: Application
    Filed: February 15, 2019
    Publication date: June 13, 2019
    Inventors: Fujio MASUOKA, Nozomu HARADA
  • Patent number: 10312110
    Abstract: A method for manufacturing a semiconductor device includes forming an SGT in a semiconductor pillar on a semiconductor substrate and forming a wiring semiconductor layer so as to contact a side surface of an impurity region present in a center portion of the semiconductor pillar or a side surface of a gate conductor layer. A first alloy layer formed in a side surface of the wiring semiconductor layer is directly connected to the impurity region and the gate conductor layer and is connected to an output wiring metal layer through a contact hole formed on an upper surface of a second alloy layer formed in an upper surface and the side surface of the wiring semiconductor layer.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: June 4, 2019
    Assignee: Unisantis Electronics Singapore Pte. Ltd.
    Inventors: Fujio Masuoka, Nozomu Harada
  • Publication number: 20190157426
    Abstract: The method for producing a pillar-shaped semiconductor device includes a step of providing a structure that includes, on an i layer substrate, a Si pillar and an impurity region located in a lower portion of the Si pillar and serving as a source or a drain, a step of forming a SiO2 layer that extends in a horizontal direction and is connected to an entire periphery of the impurity region in plan view, a step of forming a SiO2 layer on the SiO2 layer such that the SiO2 layer surrounds the Si pillar in plan view, a step of forming a resist layer that is partly connected to the SiO2 layer in plan view, and a step of forming a SiO2 layer by etching the SiO2 layer below the SiO2 layer and the resist layer using the SiO2 layer and the resist layer as masks.
    Type: Application
    Filed: January 7, 2019
    Publication date: May 23, 2019
    Inventors: Fujio MASUOKA, Nozomu HARADA