Patents by Inventor Paul Chang

Paul Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9000530
    Abstract: A memory device includes a first plurality of semiconductor nanowires tethered between landing pads and suspended over a substrate. A first gate electrode surrounds each of the first plurality of semiconductor nanowires, making them gate-all-around (GAA) semiconductor nanowires. First, second, and third field effect transistors (FETs) are formed by the first plurality of semiconductor nanowires. The memory device also includes a second plurality of semiconductor nanowires tethered between landing pads and suspended over the substrate. A second gate electrode surrounds each of the second plurality of semiconductor nanowires, making them GAA semiconductor nanowires. Fourth, fifth, and sixth FETs are formed by the second plurality of semiconductor nanowires.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: April 7, 2015
    Assignee: International Business Machines Corporation
    Inventors: Karthik Balakrishnan, Josephine B. Chang, Paul Chang, Michael A. Guillorn
  • Patent number: 8997028
    Abstract: Impact on parametric performance of physical design choices for transistors is scored for on-current and off-current of the transistors. The impact of the design parameters are incorporated into parameters that measure predicted shift in mean on-current and mean off-current and parameters that measure predicted increase in deviations in the distribution of on-current and the off-current. Statistics may be taken at a cell level, a block level, or a chip level to optimize a chip design in a design phase, or to predict changes in parametric yield during manufacturing or after a depressed parametric yield is observed. Further, parametric yield and current level may be predicted region by region and compared with observed thermal emission to pinpoint any anomaly region in a chip to facilitate detection and correction in any mistakes in chip design.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: March 31, 2015
    Assignee: Mentor Graphics Corporation
    Inventors: James A. Culp, Paul Chang, Dureseti Chidambarrao, Praveen Elakkumanan, Jason Hibbeler, Anda C. Mocuta
  • Publication number: 20150084096
    Abstract: A faceted intrinsic buffer semiconductor material is deposited on sidewalls of a source trench and a drain trench by selective epitaxy. A facet adjoins each edge at which an outer sidewall of a gate spacer adjoins a sidewall of the source trench or the drain trench. A doped semiconductor material is subsequently deposited to fill the source trench and the drain trench. The doped semiconductor material can be deposited such that the facets of the intrinsic buffer semiconductor material are extended and inner sidewalls of the deposited doped semiconductor material merges in each of the source trench and the drain trench. The doped semiconductor material can subsequently grow upward. Faceted intrinsic buffer semiconductor material portions allow greater outdiffusion of dopants near faceted corners while suppressing diffusion of dopants in regions of uniform width, thereby suppressing short channel effects.
    Type: Application
    Filed: October 7, 2014
    Publication date: March 26, 2015
    Inventors: Bhupesh Chandra, Paul Chang, Gregory G. Freeman, Dechao Guo, Judson R. Holt, Arvind Kumar, Timothy J. McArdle, Shreesh Narasimha, Viorel Ontalus, Sangameshwar Saudari, Christopher D. Sheraw, Matthew W. Stoker
  • Patent number: 8981478
    Abstract: Semiconductor devices and methods that include forming a fin field effect transistor by defining a fin hardmask on a semiconductor layer, forming a dummy structure over the fin hardmask to establish a planar area on the semiconductor layer, removing a portion of the fin hardmask that extends beyond the dummy structure, etching a semiconductor layer adjacent to the dummy structure to produce recessed source and drain regions, removing the dummy structure, etching the semiconductor layer in the planar area to produce fins, and forming a gate stack over the fins.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: March 17, 2015
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Paul Chang, Michael A. Guillorn, Chung-Hsun Lin, Jeffrey W. Sleight
  • Patent number: 8949080
    Abstract: A method of designing an integrated circuit includes performing a pre-layout simulation of the integrated circuit. The pre-layout simulation is performed using a netlist generated from a process design kit (PDK) file. The PDK file includes a plurality of device model cards that are assigned to plurality of devices. The plurality of devices include a first device having at least one parasitic diode that is associated with at least one isolation well, the PDK file including information of the at least one parasitic diode. A design layout of the integrated circuit corresponding to a result of the pre-layout simulation is generated.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: February 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Tsai Li, Paul Chang, Andy Chang
  • Patent number: 8940595
    Abstract: A faceted intrinsic buffer semiconductor material is deposited on sidewalls of a source trench and a drain trench by selective epitaxy. A facet adjoins each edge at which an outer sidewall of a gate spacer adjoins a sidewall of the source trench or the drain trench. A doped semiconductor material is subsequently deposited to fill the source trench and the drain trench. The doped semiconductor material can be deposited such that the facets of the intrinsic buffer semiconductor material are extended and inner sidewalls of the deposited doped semiconductor material merges in each of the source trench and the drain trench. The doped semiconductor material can subsequently grow upward. Faceted intrinsic buffer semiconductor material portions allow greater outdiffusion of dopants near faceted corners while suppressing diffusion of dopants in regions of uniform width, thereby suppressing short channel effects.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 27, 2015
    Assignee: International Business Machines Corporation
    Inventors: Bhupesh Chandra, Paul Chang, Gregory G. Freeman, Dechao Guo, Judson R. Holt, Arvind Kumar, Timothy J. McArdle, Shreesh Narasimha, Viorel Ontalus, Sangameshwar Rao Saudari, Christopher D. Sheraw, Matthew W. Stoker
  • Patent number: 8900959
    Abstract: A gate-first processing scheme for forming a nanomesh field effect transistor is provided. An alternating stack of two different semiconductor materials is patterned to include two pad regions and nanowire regions. A semiconductor material is laterally etched selective to another semiconductor material to form a nanomesh including suspended semiconductor nanowires. A stack of a gate dielectric, a gate electrode, and a gate cap dielectric is formed over the nanomesh. A dielectric spacer is formed around the gate electrode. An isotropic etch is employed to remove dielectric materials that are formed in lateral recesses of the patterned alternating stack. A selective epitaxy process can be employed to form a source region and a drain region.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: December 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Paul Chang, Isaac Lauer, Jeffrey W. Sleight
  • Publication number: 20140348857
    Abstract: The present invention relates to methods for treating endoplasmic reticulum (ER) stress-related conditions (e.g., cancer, protein folding/misfolding disease, diabetes mellitus) and for identifying compounds for treating ER stress-related conditions in a subject (e.g., a human). The invention also provides methods for diagnosing an ER stress-related condition in a subject and kits for the treatment of same.
    Type: Application
    Filed: October 26, 2012
    Publication date: November 27, 2014
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Paul Chang, Miri Jwa, Sejal Kamlesh Vyas
  • Publication number: 20140315363
    Abstract: A memory device includes a first plurality of semiconductor nanowires tethered between landing pads and suspended over a substrate. A first gate electrode surrounds each of the first plurality of semiconductor nanowires, making them gate-all-around, (GAA) semiconductor nanowires. First, second, and third field effect transistors (FETs) are formed by the first plurality of semiconductor nanowires. The memory device also includes a second plurality of semiconductor nanowires tethered between landing pads and suspended over the substrate. A second gate electrode surrounds each of the second plurality of semiconductor nanowires, making them GAA semiconductor nanowires. Fourth, fifth, and sixth FETs are formed by the second plurality of semiconductor nanowires.
    Type: Application
    Filed: August 20, 2013
    Publication date: October 23, 2014
    Applicant: International Business Machines Corporation
    Inventors: Karthik Balakrishnan, Josephine B. Chang, Paul Chang, Michael A. Guillorn
  • Patent number: 8845247
    Abstract: A milling machine has a base, a work platform mounted movably on the base, and a ruler mounted on the work platform. The work platform is movable relative to a base axis. The thermal compensation system includes a sensor and a control unit. The sensor is configured to be mounted on the base for sensing a position of each of the work platform and the ruler relative to the base axis. The control unit is coupled to the sensor, and determines a work platform displacement and a ruler displacement according to the positions sensed by the sensor. The control unit further calculates a compensation value based on the work platform displacement and the ruler displacement. The control unit is configured to correct the position of the work platform relative to the base axis according to the compensation value.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: September 30, 2014
    Assignees: Buffalo Machinery Company Limited, The Department of Electrical Engineering, National Chang-Hua University of Education
    Inventors: Ching-Wei Wu, Ying-Shing Shiao, Chia-Hui Tang, Yu-Che Wang, Paul Chang
  • Publication number: 20140264558
    Abstract: A faceted intrinsic buffer semiconductor material is deposited on sidewalls of a source trench and a drain trench by selective epitaxy. A facet adjoins each edge at which an outer sidewall of a gate spacer adjoins a sidewall of the source trench or the drain trench. A doped semiconductor material is subsequently deposited to fill the source trench and the drain trench. The doped semiconductor material can be deposited such that the facets of the intrinsic buffer semiconductor material are extended and inner sidewalls of the deposited doped semiconductor material merges in each of the source trench and the drain trench. The doped semiconductor material can subsequently grow upward. Faceted intrinsic buffer semiconductor material portions allow greater outdiffusion of dopants near faceted corners while suppressing diffusion of dopants in regions of uniform width, thereby suppressing short channel effects.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bhupesh Chandra, Paul Chang, Gregory G. Freeman, Dechao Guo, Judson R. Holt, Arvind Kumar, Timothy J. McArdle, Shreesh Narasimha, Viorel Ontalus, Sangameshwar Rao Saudari, Christopher D. Sheraw, Matthew W. Stoker
  • Publication number: 20140264276
    Abstract: A gate-first processing scheme for forming a nanomesh field effect transistor is provided. An alternating stack of two different semiconductor materials is patterned to include two pad regions and nanowire regions. A semiconductor material is laterally etched selective to another semiconductor material to form a nanomesh including suspended semiconductor nanowires. A stack of a gate dielectric, a gate electrode, and a gate cap dielectric is formed over the nanomesh. A dielectric spacer is formed around the gate electrode. An isotropic etch is employed to remove dielectric materials that are formed in lateral recesses of the patterned alternating stack. A selective epitaxy process can be employed to form a source region and a drain region.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Josephine B. Chang, Paul Chang, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 8836087
    Abstract: Disposable gate structures are formed on a semiconductor substrate. A planarization dielectric layer is deposited over the disposable gate structures and planarized to provide a top surface that is coplanar with top surface of the disposable gate structures. The planarization dielectric layer at this point includes gap-fill keyholes between narrowly spaced disposable gate structures. A printable dielectric layer is deposited over the planarization dielectric layer to fill the gap-fill keyholes. Areas of the printable dielectric layer over the gap-fill keyholes are illuminated with radiation that cross-links cross-linkable bonds in the material of the printable dielectric layer. Non-crosslinked portions of the printable dielectric layer are subsequently removed selective to crosslinked portions of the printable dielectric layer, which fills at least the upper portion of each gate-fill keyhole. The disposable gate structures are removed to form gate cavities.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Paul Chang, Josephine B. Chang, Michael A. Guillorn, Jeffrey W. Sleight
  • Patent number: 8796742
    Abstract: An alternating stack of two different semiconductor materials is patterned to include two pad regions and nanowire regions. A semiconductor material is laterally etched selective to another semiconductor material to form a nanomesh including suspended semiconductor nanowires. Gate dielectrics, a gate electrode, and a gate cap dielectric are formed over the nanomesh. A dielectric spacer is formed around the gate electrode. The semiconductor materials in the two pad regions and physically exposed portions of the nanomesh are removed employing the dielectric spacer and the gate cap dielectric as an etch mask. A source region and a drain region are epitaxially grown from end surfaces of the nanomesh.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: August 5, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Paul Chang, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 8785981
    Abstract: A gate-first processing scheme for forming a nanomesh field effect transistor is provided. An alternating stack of two different semiconductor materials is patterned to include two pad regions and nanowire regions. A semiconductor material is laterally etched selective to another semiconductor material to form a nanomesh including suspended semiconductor nanowires. A stack of a gate dielectric, a gate electrode, and a gate cap dielectric is formed over the nanomesh. A dielectric spacer is formed around the gate electrode. An isotropic etch is employed to remove dielectric materials that are formed in lateral recesses of the patterned alternating stack. A selective epitaxy process can be employed to form a source region and a drain region.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: July 22, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Paul Chang, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 8778768
    Abstract: An alternating stack of two different semiconductor materials is patterned to include two pad regions and nanowire regions. A semiconductor material is laterally etched selective to another semiconductor material to form a nanomesh including suspended semiconductor nanowires. Gate dielectrics, a gate electrode, and a gate cap dielectric are formed over the nanomesh. A dielectric spacer is formed around the gate electrode. The semiconductor materials in the two pad regions and physically exposed portions of the nanomesh are removed employing the dielectric spacer and the gate cap dielectric as an etch mask. A source region and a drain region are epitaxially grown from end surfaces of the nanomesh.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: July 15, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Paul Chang, Issac Lauer, Jeffrey W. Sleight
  • Patent number: 8779414
    Abstract: A disposable material layer is first deposited on a graphene layer or a carbon nanotube (CNT). The disposable material layer includes a material that is less inert than graphene or CNT so that a contiguous dielectric material layer can be deposited at a target dielectric thickness without pinholes therein. A gate stack is formed by patterning the contiguous dielectric material layer and a gate conductor layer deposited thereupon. The disposable material layer shields and protects the graphene layer or the CNT during formation of the gate stack. The disposable material layer is then removed by a selective etch, releasing a free-standing gate structure. The free-standing gate structure is collapsed onto the graphene layer or the CNT below at the end of the selective etch so that the bottom surface of the contiguous dielectric material layer contacts an upper surface of the graphene layer or the CNT.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: July 15, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Paul Chang, Michael A. Guillorn, Philip S. Waggoner
  • Publication number: 20140190405
    Abstract: A chemical vapor deposition reactor and a method of wafer processing are provided. The reactor can include a reaction chamber having an interior and an entry port for insertion and removal of substrates, a gas inlet manifold communicating with the interior of the chamber for admitting process gasses to form a deposit on substrates held within the interior, a shutter mounted to the chamber, and one or more cleaning elements mounted within the chamber. The shutter can be movable between (i) a run position in which the cleaning elements are remote from the exhaust channel and (ii) a cleaning position in which the one or more cleaning elements engage with the shutter so that the cleaning elements remove deposited particles from the shutter upon movement of the shutter to the cleaning position.
    Type: Application
    Filed: January 8, 2013
    Publication date: July 10, 2014
    Applicant: VEECO INSTRUMENTS INC.
    Inventors: Chenghung Paul Chang, Keng Moy, Alexander I. Gurary
  • Patent number: 8770901
    Abstract: A spindle control system for a milling machine is provided. The milling machine includes a column, an overarm, a spindle for mounting a cutter, a first motor mounted on the column for driving movement of the overarm, and a second motor mounted on the overarm for driving rotation of the spindle. The spindle control system includes a distance sensor and a temperature sensor, each to be mounted on the overarm and to be disposed proximate to the end portion of the spindle. The spindle control system further includes a central control unit for determining a compensation parameter based on the displacement sensed by the distance sensor and the temperature sensed by the temperature sensor, and for controlling movement of the overarm by the first motor through a compensation distance based on the compensation parameter to compensate for at least one of the cutter deformation and the spindle deformation.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: July 8, 2014
    Assignees: Buffalo Machinery Company Limited, The Department of Electrical Engineering, National Chang-Hua University of Education
    Inventors: Chia-Hui Tang, Yu-Lin Juan, Jin-Jia Chen, Tsair-Rong Chen, Paul Chang
  • Patent number: 8764357
    Abstract: A milling machine has a carriage, a main spindle seat extending along an axis, and a motor operable to drive displacement of the main spindle seat relative to the carriage along the axis. A deflection correction system includes a control unit, a displacement sensor, at least one pressure cylinder, and a pressure sensor. The pressure cylinder includes a cylinder body, and a control rod extended retractably into the cylinder body. The control unit is configured to determine a pressure range as a function of displacement detected by the displacement sensor, and to maintain fluid pressure in the pressure cylinder within a pressure range, thereby controlling the control rod via the cylinder body to position the second end portion of the main spindle seat relative to the axis.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: July 1, 2014
    Assignees: Buffalo Machinery Company Limited, The Department of Engineering, National Chang-Hua University of Education
    Inventors: Kun-Fang Huang, Tsair-Rong Chen, Chia-Hui Tang, Wen-Ren Yang, Paul Chang