Patents by Inventor Pouya Hashemi

Pouya Hashemi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200258941
    Abstract: A resistive memory structure is provided. The resistive memory structure includes a vertical fin on a substrate, wherein the sidewalls of the vertical fin each have a {100} crystal face. The resistive memory structure further includes a fin template on the vertical fin, and a gate structure on the vertical fin. The resistive memory structure further includes a top source/drain on opposite sidewalls of the vertical fin, and a bottom electrode layer on the top source/drain, wherein the bottom electrode layer is on opposite sides of the fin template. The resistive memory structure further includes a first middle resistive layer on a portion of the bottom electrode layer, a top electrode layer on the first middle resistive layer, and a first electrical contact on a portion of the bottom electrode layer.
    Type: Application
    Filed: February 8, 2019
    Publication date: August 13, 2020
    Inventors: Choonghyun Lee, Takashi Ando, Alexander Reznicek, Jingyun Zhang, Pouya Hashemi
  • Publication number: 20200251652
    Abstract: A method of forming a magnetic tunnel junction (MTJ) containing device is provided in which a patterned sacrificial material is present atop a MTJ pillar that is located on a bottom electrode. A passivation material liner and a dielectric material portion laterally surround the MTJ pillar and the patterned sacrificial material. The patterned sacrificial material is removed from above the MTJ pillar and replaced with a top electrode. A seam is present in the top electrode. The method mitigates the possibility of depositing resputtered conductive metal particles on a sidewall of the MTJ pillar. Thus, improved device performance, in terms of a reduction in failure mode, can be obtained.
    Type: Application
    Filed: February 4, 2019
    Publication date: August 6, 2020
    Inventors: Pouya Hashemi, Alexander Reznicek, Nathan P. Marchack, Bruce B. Doris
  • Publication number: 20200251558
    Abstract: Vertical field effect transistors (VFETs) having a gradient threshold voltage and an engineered channel are provided. The engineered channel includes a vertical dog-bone shaped channel structure that is composed of silicon having a germanium content that is 1 atomic percent or less and having a lower portion having a first channel width, a middle portion having a second channel width that is less than the first channel width, and an upper portion having the first channel width. Due to the quantum confinement effect, the middle portion of the vertical dog-bone shaped channel structure has a higher threshold voltage than the lower portion and the upper portion of the vertical dog-bone shaped channel structure. Hence, the at least one vertical dog-bone shaped channel structure has an asymmetric threshold voltage profile. Also, the VFET containing the vertical dog-bone shaped channel structure has improved electrical characteristics and device performance.
    Type: Application
    Filed: February 6, 2019
    Publication date: August 6, 2020
    Inventors: Pouya Hashemi, Takashi Ando, Alexander Reznicek, Jingyun Zhang, Choonghyun Lee
  • Patent number: 10734447
    Abstract: Techniques regarding FET 1T2R unit cells are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a first resistive random-access memory unit operably coupled to a field-effect transistor by a first extrinsic semiconductor layer. The system can also comprise a second resistive random-access memory unit operably coupled to the field-effect transistor by a second extrinsic semiconductor layer.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: August 4, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Pouya Hashemi, Alexander Reznicek, Choonghyun Lee, Jingyun Zhang
  • Patent number: 10734505
    Abstract: A structure and method of forming a lateral bipolar junction transistor (LBJT) that includes: a first base layer, a second base layer over the first base layer, and an emitter region and collector region present on opposing sides of the first base layer, where the first base layer has a wider-band gap than the second base layer, and where the first base layer includes a III-V semiconductor material.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: August 4, 2020
    Assignee: International Business Machines Corporation
    Inventors: Pouya Hashemi, Bahman Hekmatshoartabari, Alexander Reznicek, Karthik Balakrishnan, Jeng-Bang Yau
  • Patent number: 10734479
    Abstract: A FinFET having an asymmetric threshold voltage distribution is provided by modifying a portion of the channel region of a semiconductor fin that is nearest to the drain side with an epitaxial semiconductor material layer. In some embodiments, the channel region of the semiconductor fin nearest to the drain side is trimmed prior to forming the epitaxial semiconductor material layer.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: August 4, 2020
    Assignee: International Business Machines Corporation
    Inventors: Alexander Reznicek, Choonghyun Lee, Takashi Ando, Jingyun Zhang, Pouya Hashemi
  • Patent number: 10734286
    Abstract: A method is presented for attaining different gate dielectric thicknesses across a plurality of field effect transistor (FET) devices. The method includes forming interfacial and high-k dielectric layers around alternate semiconductor layers of the plurality of FET devices, pinching off gaps between the alternate semiconductor layers by depositing a high work function capping layer over the plurality of FET devices, selectively removing the high work function capping layer from a first set of the plurality of FET devices, depositing a sacrificial capping layer, with the sacrificial capping layer leaving gaps between the alternate semiconductor layers of the first set of the plurality of FET devices, depositing an oxygen blocking layer, and annealing the plurality of FET devices to create different gate dielectric thicknesses for each of the plurality of FET devices.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: August 4, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Jingyun Zhang, Alexander Reznicek, Choonghyun Lee, Pouya Hashemi
  • Patent number: 10734382
    Abstract: After forming a plurality of semiconductor fins that are separated from one another by trenches on a substrate, the semiconductor fins are fully or partially oxidized to provide semiconductor oxide portions. The volume expansion caused by the oxidation of the semiconductor fins reduces widths of the trenches, thereby providing narrowed trenches for formation of epitaxial semiconductor fins using aspect ratio trapping techniques.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: August 4, 2020
    Assignee: International Business Machines Corporation
    Inventors: Karthik Balakrishnan, Kangguo Cheng, Pouya Hashemi, Alexander Reznicek
  • Publication number: 20200243756
    Abstract: A magnetic tunnel junction (MTJ) containing device is provided in which a conformal dielectric encapsulation liner is located on a sidewall of each of a MTJ pillar and an overlying top electrode, and a non-conformal dielectric encapsulation liner is located on the conformal dielectric encapsulation liner. This dual encapsulation liner structure prevents the bottom electrode of the MTJ containing device from being physically exposed thus eliminating the possibility that the bottom electrode can be a source of resputtered conductive metal particles that can deposit on a sidewall of the MTJ pillar. As such, electrical shorting is reduced in the MTJ containing device of the present application. Also, the dual encapsulation liner structure can mitigate chemical diffusion into the tunnel barrier material of the MTJ pillar.
    Type: Application
    Filed: January 24, 2019
    Publication date: July 30, 2020
    Inventors: Nathan P. Marchack, Bruce B. Doris, Pouya Hashemi
  • Publication number: 20200243758
    Abstract: A bottom electrode structure for a magnetic tunnel junction (MTJ) containing device is provided. The bottom electrode structure includes a mesa portion that is laterally surrounded by a recessed region. The recessed region of the bottom electrode structure is laterally adjacent to a dielectric material, and a MTJ pillar is located on the mesa portion of the bottom electrode structure. Such a configuration shields the recessed region from impinging ions thus preventing deposition of resputtered conductive metal particles from the bottom electrode onto the MTJ pillar.
    Type: Application
    Filed: January 29, 2019
    Publication date: July 30, 2020
    Inventors: Nathan P. Marchack, Bruce B. Doris, Pouya Hashemi
  • Patent number: 10727299
    Abstract: A lateral bipolar junction transistor (LBJT) device that may include a dielectric stack including a pedestal of a base region passivating dielectric and a nucleation dielectric layer; and a base region composed of a germanium containing material or a type III-V semiconductor material in contact with the pedestal of the base region passivating dielectric. An emitter region and collector region may be present on opposing sides of the base region contacting a sidewall of the pedestal of the base region passivating dielectric and an upper surface of the nucleation dielectric layer.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: July 28, 2020
    Assignee: ELPIS TECHNOLOGIES INC.
    Inventors: Kevin K. Chan, Pouya Hashemi, Tak H. Ning, Alexander Reznicek
  • Patent number: 10727310
    Abstract: A method and structure is provided in which germanium or a germanium tin alloy can be used as a channel material in either planar or non-planar architectures, with a functional gate structure formed utilizing either a gate first or gate last process. After formation of the functional gate structure, and contact openings within a middle-of-the-line (MOL) dielectric material, a hydrogenated silicon layer is formed that includes hydrogenated crystalline silicon regions disposed over the germanium or a germanium tin alloy, and hydrogenated amorphous silicon regions disposed over dielectric material. The hydrogenated amorphous silicon regions can be removed selective to the hydrogenated crystalline silicon regions, and thereafter a contact structure is formed on the hydrogenated crystalline silicon regions.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: July 28, 2020
    Assignee: International Business Machines Corporation
    Inventors: Karthik Balakrishnan, Pouya Hashemi, Bahman Hekmatshoartabari, Alexander Reznicek
  • Publication number: 20200235209
    Abstract: A FinFET having an asymmetric threshold voltage distribution is provided by modifying a portion of the channel region of a semiconductor fin that is nearest to the drain side with an epitaxial semiconductor material layer. In some embodiments, the channel region of the semiconductor fin nearest to the drain side is trimmed prior to forming the epitaxial semiconductor material layer.
    Type: Application
    Filed: January 23, 2019
    Publication date: July 23, 2020
    Inventors: Alexander Reznicek, Choonghyun Lee, Takashi Ando, Jingyun Zhang, Pouya Hashemi
  • Patent number: 10720502
    Abstract: Embodiments of the invention are directed to a method of forming a semiconductor device. A non-limiting example of the method includes forming a fin having a fin bottom region. A charged region is formed on a sidewall of the fin bottom region, wherein the charged region includes charged particles, and wherein the fin bottom region is formed from an undoped semiconductor material. The charged particles attract charge carriers in the fin bottom region toward and adjacent to the sidewall of the fin bottom region, wherein the charge carriers form a current path through the undoped semiconductor material of the fin bottom region.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: July 21, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Pouya Hashemi, Choonghyun Lee, Alexander Reznicek, Jingyun Zhang
  • Patent number: 10720427
    Abstract: An electrical device including a vertical transistor device connected to a vertical diode. The vertical diode connected transistor device including a vertically orientated channel. The vertical diode connected transistor device also includes a first diode source/drain region provided by an electrically conductive surface region of a substrate at a first end of the diode vertically orientated channel, and a second diode source/drain region present at a second end of the vertically orientated channel. The vertical diode also includes a diode gate structure in electrical contact with the first diode source/drain region.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: July 21, 2020
    Assignee: International Business Machines Corporation
    Inventors: Karthik Balakrishnan, Pouya Hashemi, Alexander Reznicek
  • Patent number: 10720528
    Abstract: A semiconductor structure is provided that includes a fin stack structure of, from bottom to top, a first semiconductor material fin portion, an insulator fin portion and a second semiconductor material fin portion. The first semiconductor material fin portion can be used as a first device region in which a first conductivity-type device (e.g., n-FET or p-FET) can be formed, while the second semiconductor material fin portion can be used as a second device region in which a second conductivity-type device (e.g., n-FET or p-FET), which is opposite the first conductivity-type device, can be formed.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: July 21, 2020
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Pouya Hashemi, Ali Khakifirooz, Alexander Reznicek
  • Patent number: 10714570
    Abstract: A semiconductor device including a plurality of suspended nanowires and a gate structure present on a channel region portion of the plurality of suspended nanowires. The gate structure has a uniform length extending from an upper surface of the gate structure to the base of the gate structure. The semiconductor device further includes a dielectric spacer having a uniform composition in direct contact with the gate structure. Source and drain regions are present on source and drain region portions of the plurality of suspended nanowires.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: July 14, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Pouya Hashemi, Ali Khakifirooz, Alexander Reznicek
  • Patent number: 10714593
    Abstract: A method of forming a strained vertical p-type field effect transistor, including forming a counter-doped layer at a surface of a substrate, forming a source/drain layer on the counter-doped layer, forming one or more vertical fins on the source/drain layer, removing a portion of the source/drain layer to form one or more bottom source/drains below each of the one or more vertical fins, reacting an exposed portion of each of the one or more bottom source/drains with a reactant to form a disposable layer on opposite sides of each bottom source/drain and a condensation layer between the two adjacent disposable layers, and removing the disposable layers.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: July 14, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karthik Balakrishnan, Kangguo Cheng, Pouya Hashemi, Alexander Reznicek
  • Publication number: 20200220068
    Abstract: An ultra-small diameter and a tall bottom electrode for use in magnetic random access memory (MRAM) devices containing a multilayered MTJ pillar is provided. The bottom electrode is formed by depositing a thick bottom electrode layer on a surface of a metallic etch stop layer. The bottom electrode layer is then patterned by lithography and etching to provide a bottom electrode structure. An angled ion beam etch is thereafter used to trim the bottom electrode structure into a bottom electrode having a high aspect ratio (on the order of 10:1 or greater).
    Type: Application
    Filed: January 4, 2019
    Publication date: July 9, 2020
    Inventors: Pouya Hashemi, Bruce B. Doris, John A. Ott, Nathan P. Marchack
  • Publication number: 20200220072
    Abstract: A semiconductor structure and fabrication method of forming a semiconductor structure. The method first provides an electrically conductive structure embedded in an interconnect dielectric material layer of a magnetoresistive random access memory device. A conductive landing pad is located on a surface of the electrically conductive structure. A multilayered magnetic tunnel junction (MTJ) structure and an MTJ cap layer is formed on the landing pad. Then there is formed a first conductive layer on top the MTJ cap layer and a second conductive metal layer formed on top the first conductive layer. A pillar mask structure is then patterned and formed on the second conductive layer. The resulting structure is subject to lithographic patterning and etching to form a patterned bilayer metal hardmask pillar structure on top the MTJ cap layer. Subsequent etch processing forms an MTJ stack having sidewalls aligned to the patterned bilayer metal hardmask pillar.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 9, 2020
    Inventors: Nathan P. Marchack, Bruce B. Doris, Pouya Hashemi