Patents by Inventor Pouya Hashemi

Pouya Hashemi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200127054
    Abstract: Techniques regarding FET 1T2R unit cells are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a first resistive random-access memory unit operably coupled to a field-effect transistor by a first extrinsic semiconductor layer. The system can also comprise a second resistive random-access memory unit operably coupled to the field-effect transistor by a second extrinsic semiconductor layer.
    Type: Application
    Filed: October 22, 2018
    Publication date: April 23, 2020
    Inventors: Takashi Ando, Pouya Hashemi, Alexander Reznicek, Choonghyun Lee, Jingyun Zhang
  • Publication number: 20200119088
    Abstract: Fabricating a magnetoresistive random access memory (MRAM) device includes receiving a wafer structure having a first inter-layer dielectric (ILD) layer and a metal material disposed within the first ILD layer. A second ILD layer is deposited upon a top surface of the first ILD layer and the metal material. A trench is formed within the second ILD layer extending to the top surface of the metal material. A plurality of magnetic stack layers of a magnetic stack and an electrode layer are deposited within the trench. Portions of each of the magnetic stack layers of the magnetic stack and the electrode layer are removed to form a v-shaped magnetic tunnel junction (MTJ) in contact with the metal material.
    Type: Application
    Filed: October 11, 2018
    Publication date: April 16, 2020
    Applicant: International Business Machines Corporation
    Inventors: Pouya HASHEMI, MATTHIAS GEORG GOTTWALD, Alexander Reznicek, Chandrasekharan KOTHANDARAMAN
  • Patent number: 10622486
    Abstract: A tilted nanowire structure is provided which has an increased gate length as compared with a horizontally oriented semiconductor nanowire at the same pitch. Such a structure avoids complexity required for vertical transistors and can be fabricated on a bulk semiconductor substrate without significantly changing/modifying standard transistor fabrication processing.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: April 14, 2020
    Assignee: International Business Machines Corporation
    Inventors: Pouya Hashemi, Kangguo Cheng, Alexander Reznicek, Karthik Balakrishnan
  • Patent number: 10622466
    Abstract: A semiconductor structure includes a substrate, an isolation layer disposed over the substrate, a plurality of nanosheet channels, interfacial layers surrounding each of the nanosheet channels, and dielectric layers surrounding each of the interfacial layers. The plurality of nanosheet channels includes first and second sets of two or more nanosheet channels for first and second NFETs and third and fourth sets of two or more nanosheet channels for first and second PFETs. The interfacial layers surrounding the first and third sets of nanosheet channels for the first NFET and the first PFET have a first thickness, and interfacial layers surrounding the second and fourth sets of nanosheets channels for the second NFET and the second PFET have a second thickness smaller than the first thickness. The first NFET has a higher threshold voltage than the second NFET, and the first PFET has a lower threshold voltage than the second PFET.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: April 14, 2020
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, ChoongHyun Lee, Jingyun Zhang, Pouya Hashemi
  • Publication number: 20200111788
    Abstract: A method is presented for triggering asymmetric threshold voltage along a channel of a vertical transport field effect transistor (VTFET). The method includes constructing a first set fins from a first material, constructing a second set of fins from a second material, forming a source region between the first set of fins, and forming a drain region between the second set of fins, the source region composed of a different material than the drain region. The method further includes depositing a first high-k metal gate over the first set of fins and depositing a second high-k metal gate over the second set of fins, the second high-k metal gate being different than the first high-k metal gate such that the asymmetric threshold voltage is present along the channel of the VTFET in a region defined at the bottom of the first and second set of fins.
    Type: Application
    Filed: October 2, 2019
    Publication date: April 9, 2020
    Inventors: Choonghyun Lee, Jingyun Zhang, Takashi Ando, Alexander Reznicek, Pouya Hashemi
  • Publication number: 20200111888
    Abstract: A method of forming a stacked gate all around MOSFET is provided. A stack of alternating layers of Si and SiGe are formed on a substrate. A number of holes are etched through the stack and Si anchors formed in the holes. The SiGe layers are removed. A number of dummy gates are formed on the substrate and a Low-K spacer material deposited around the dummy gates. A number of S/D recesses are etched through the Si layers, removing the Si anchors. The dummy gates and spacer material preserves sections of the Si layers during etching, forming stacks of Si channels. S/Ds are formed in the recesses. The dummy gates are then removed replaced with metal gate stacks.
    Type: Application
    Filed: October 4, 2018
    Publication date: April 9, 2020
    Inventors: Pouya Hashemi, Takashi Ando, Choonghyun Lee, Jingyun Zhang
  • Publication number: 20200111886
    Abstract: Semiconductor devices and method of forming the same include recessing sacrificial layers relative to the channel layers, in a stack of vertically aligned, alternating sacrificial layers and channel layers, to form first recesses. A dual-layer dielectric is deposited that includes a first dielectric material formed conformally on surfaces of the recesses and a second dielectric material filling a remainder of the first recesses. The first dielectric material is recessed relative to the second dielectric material to form second recesses. Additional second dielectric material is deposited to fill the second recesses. The second dielectric material and the additional second dielectric material is etched away to create air gaps.
    Type: Application
    Filed: December 4, 2019
    Publication date: April 9, 2020
    Inventors: Takashi Ando, Pouya Hashemi, Choonghyun Lee, Alexander Reznicek, Jingyun Zhang
  • Publication number: 20200111787
    Abstract: A method is presented for triggering asymmetric threshold voltage along a channel of a vertical transport field effect transistor (VTFET). The method includes constructing a first set fins from a first material, constructing a second set of fins from a second material, forming a source region between the first set of fins, and forming a drain region between the second set of fins, the source region composed of a different material than the drain region. The method further includes depositing a first high-k metal gate over the first set of fins and depositing a second high-k metal gate over the second set of fins, the second high-k metal gate being different than the first high-k metal gate such that the asymmetric threshold voltage is present along the channel of the VTFET in a region defined at the bottom of the first and second set of fins.
    Type: Application
    Filed: October 2, 2019
    Publication date: April 9, 2020
    Inventors: Choonghyun Lee, Jingyun Zhang, Takashi Ando, Alexander Reznicek, Pouya Hashemi
  • Patent number: 10615043
    Abstract: Methods are provided to form pure silicon oxide layers on silicon-germanium (SiGe) layers, as well as an FET device having a pure silicon oxide interfacial layer of a metal gate structure formed on a SiGe channel layer of the FET device. For example, a method comprises growing a first silicon oxide layer on a surface of a SiGe layer using a first oxynitridation process, wherein the first silicon oxide layer comprises nitrogen. The first silicon oxide layer is removed, and a second silicon oxide layer is grown on the surface of the SiGe layer using a second oxynitridation process, which is substantially the same as the first oxynitridation process, wherein the second silicon oxide layer is substantially devoid of germanium oxide and nitrogen. For example, the first silicon oxide layer comprises a SiON layer and the second silicon oxide layer comprises a pure silicon dioxide layer.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: April 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Pouya Hashemi, Hemanth Jagannathan, Choonghyun Lee, Vijay Narayanan
  • Patent number: 10615271
    Abstract: A bipolar junction transistor (LBJT) device that includes a base region of a first III-V semiconductor material having A first band gap; and emitter and collector regions present on opposing sides of the base region, wherein the emitter and collector regions are comprised of a second III-V semiconductor material having a wider band gap than the first III-V semiconductor material. A dielectric region is present underlying the base region, emitter region and the collect region. The dielectric region has an inverted apex geometry. The sidewalls of dielectric region that extend to the apex of the inverted apex geometry are present on facets of a supporting substrate III-V semiconductor material having a {110} crystalline orientation.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: April 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Pouya Hashemi, Mahmoud Khojasteh, Tak H. Ning, Alexander Reznicek
  • Publication number: 20200105896
    Abstract: Semiconductor devices include a stack of vertically arranged channel layers. A gate stack is formed above, between, and around the vertically arranged channel layers. Source and drain regions and source and drain conductive contacts are formed. Inner spacers are formed between the vertically arranged channel layers, each having an inner air gap and a recessed layer formed from a first dielectric material. Outer spacers are formed between the gate stack and the source and drain conductive contacts, each having a second dielectric material that is pinched off to form an outer air gap.
    Type: Application
    Filed: December 4, 2019
    Publication date: April 2, 2020
    Inventors: Takashi Ando, Pouya Hashemi, Choonghyun Lee, Alexander Reznicek, Jingyun Zhang
  • Publication number: 20200105929
    Abstract: Channel engineering is employed to obtain a gate-all-around field-effect transistor having an asymmetric threshold voltage. A dual channel profile enables a steep potential distribution near the source side that enhances the lateral channel electric field and thus increases the carrier mobility.
    Type: Application
    Filed: September 29, 2018
    Publication date: April 2, 2020
    Inventors: Jingyun Zhang, Choonghyun Lee, Takashi Ando, Pouya Hashemi, Alexander Reznicek
  • Patent number: 10608179
    Abstract: A memory device including a lower electrode having an upper portion extending above an upper surface of a first dielectric layer, wherein the upper portion of the lower electrode has corners that are exposed. The memory device also includes a metal oxide layer having a conformal thickness present on sidewalls of the upper portion of the lower electrode. The metal oxide layer is present on at least the corners of the lower electrode that extend above the first dielectric layer. The memory device may also include an upper electrode present on the metal oxide layer. The upper electrode being separated from an entirety of the lower electrode by the metal oxide layer. In some embodiments, the memory device is a resistive random access memory device. The corners of the lower electrode localize filament formation in the metal oxide layer.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: March 31, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Pouya Hashemi, Alexander Reznicek
  • Publication number: 20200098928
    Abstract: A method of forming a source/drain contact is provided. The method includes forming a sacrificial layer on a source/drain, and depositing an oxidation layer on the sacrificial layer. The method further includes heat treating the oxidation layer and the sacrificial layer to form a modified sacrificial layer. The method further includes forming a protective liner on the modified sacrificial layer, and depositing an interlayer dielectric layer on the protective liner. The method further includes forming a trench in the interlayer dielectric layer that exposes a portion of the protective liner.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 26, 2020
    Inventors: Adra Carr, Jingyun Zhang, Choonghyun Lee, Takashi Ando, Pouya Hashemi
  • Publication number: 20200098927
    Abstract: A method of forming a source/drain contact is provided. The method includes forming a sacrificial layer on a source/drain, and depositing an oxidation layer on the sacrificial layer. The method further includes heat treating the oxidation layer and the sacrificial layer to form a modified sacrificial layer. The method further includes forming a protective liner on the modified sacrificial layer, and depositing an interlayer dielectric layer on the protective liner. The method further includes forming a trench in the interlayer dielectric layer that exposes a portion of the protective liner.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 26, 2020
    Inventors: Adra Carr, Jingyun Zhang, Choonghyun Lee, Takashi Ando, Pouya Hashemi
  • Patent number: 10600870
    Abstract: A semiconductor structure is provided that includes a silicon germanium alloy fin having a second germanium content located on a first portion of a substrate. The structure further includes a laterally graded silicon germanium alloy material portion located on a second portion of the substrate. The laterally graded silicon germanium alloy material portion is spaced apart from the silicon germanium alloy fin and has end portions having the second germanium content and a middle portion located between the end portions that has a first germanium content that is less than the second germanium content.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: March 24, 2020
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Pouya Hashemi, Ali Khakifirooz, Alexander Reznicek
  • Patent number: 10600883
    Abstract: Vertical transport field effect transistors (FETs) having improved device performance are provided. Notably, vertical transport FETs having a gradient threshold voltage are provided. The gradient threshold voltage is provided by introducing a threshold voltage modifying dopant into a physically exposed portion of a metal gate layer composed of an n-type workfunction TiN. The threshold voltage modifying dopant changes the threshold voltage of the original metal gate layer.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: March 24, 2020
    Assignee: International Business Machines Corporation
    Inventors: Choonghyun Lee, Takashi Ando, Jingyun Zhang, Pouya Hashemi, Alexander Reznicek
  • Patent number: 10600878
    Abstract: A semiconductor structure is provided including a strained silicon germanium alloy fin that can be employed as a channel material for a FinFET device and having a gate spacer including a lower portion that fills in a undercut region that lies adjacent to the strained silicon germanium alloy fin and beneath raised source/drain (S/D) structures and silicon pedestal structures that can provide improved overlay capacitance.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: March 24, 2020
    Assignee: International Business Machines Corporation
    Inventors: Karthik Balakrishnan, Kangguo Cheng, Pouya Hashemi, Alexander Reznicek
  • Patent number: 10600892
    Abstract: A replacement gate structure (i.e., functional gate structure) is formed and recessed to provide a capacitor cavity located above the recessed functional gate structure. A ferroelectric capacitor is formed in the capacitor cavity and includes a bottom electrode structure, a U-shaped ferroelectric material liner and a top electrode structure. The bottom electrode structure has a topmost surface that does not extend above the U-shaped ferroelectric material liner.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: March 24, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Takashi Ando, Pouya Hashemi, Alexander Reznicek
  • Publication number: 20200091322
    Abstract: A vertical, single column compound semiconductor bipolar junction transistor device includes an all-around extrinsic base. Aspect ratio trapping is employed during fabrication of the transistor device on a silicon substrate. Homojunction and heterojunction devices are formed using III-V materials with appropriate bandgaps. The emitter of the device may be electrically connected by a lateral buried metal contact.
    Type: Application
    Filed: November 6, 2019
    Publication date: March 19, 2020
    Inventors: Karthik Balakrishnan, Pouya Hashemi, Tak H. Ning, Alexander Reznicek