Patents by Inventor Rahul N. Manepalli

Rahul N. Manepalli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10892219
    Abstract: Disclosed is an embedded multi-die interconnect bridge (EMIB) substrate. The EMIB substrate can comprise an organic substrate, a bridge embedded in the organic substrate and a plurality of routing layers. The plurality of routing layers can be embedded within the bridge. Each routing layer can have a plurality of traces. Each of the plurality of routing layers can have a coefficient of thermal expansion (CTE) that varies from an adjacent routing layer.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: January 12, 2021
    Assignee: Intel Corporation
    Inventors: Srinivas V. Pietambaram, Rahul N. Manepalli
  • Patent number: 10847471
    Abstract: An electronic device includes a substrate, and the substrate may include one or more layers. The one or more layers may include a dielectric material and may include one or more electrical traces. The electronic device may include a layer of conductive material, and the layer of conductive material may define a void in the conductive material. The electronic device may include a fiducial mark, and the fiducial mark may include a filler material positioned in the void defined by the conductive material. The fiducial mark may be coupled to the layer of conductive material. The filler material may have a lower reflectivity in comparison to the conductive material, for instance to provide a contrast with the conductive material.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: November 24, 2020
    Assignee: Intel Corporation
    Inventors: Jesse C. Jones, Gang Duan, Jason Gamba, Yosuke Kanaoka, Rahul N. Manepalli, Vishal Shajan
  • Publication number: 20200365533
    Abstract: Density-graded adhesion layers on conductive structures within a microelectronic package substrate are described. An example is a density-graded adhesion layer that includes a dense region proximate to a conductive structure that is surrounded by a less dense (or porous) region adjacent to an overlying dielectric layer. Providing such a graded adhesion layer can have a number of benefits, which can include providing both mechanical connections for improved adhesion with a surrounding dielectric layer and provide hermetic protection for the underlying conductive structure from corrosive species. The adhesion layer enables the conductive structure to maintain its as-formed smooth surface which in turn reduces insertion loss of signals transmitted through the conductive structure.
    Type: Application
    Filed: May 15, 2019
    Publication date: November 19, 2020
    Applicant: Intel Corporation
    Inventors: RAHUL N. MANEPALLI, KEMAL AYGUN, SRINIVAS V. PIETAMBARAM, CEMIL S. GEYIK
  • Publication number: 20200350251
    Abstract: Electrical interconnect bridge technology is disclosed. An electrical interconnect bridge can include a bridge substrate formed of a mold compound material. The electrical interconnect bridge can also include a plurality of routing layers within the bridge substrate, each routing layer having a plurality of fine line and space (FLS) traces. In addition, the electrical interconnect bridge can include a via extending through the substrate and electrically coupling at least one of the FLS traces in one of the routing layers to at least one of the FLS traces in another of the routing layers.
    Type: Application
    Filed: July 17, 2020
    Publication date: November 5, 2020
    Applicant: Intel Corporation
    Inventors: Srinivas V. PIETAMBARAM, Rahul N. MANEPALLI
  • Publication number: 20200312767
    Abstract: A glass substrate houses an embedded multi-die interconnect bridge that is part of a semiconductor device package. Through-glass vias communicate to a surface for mounting on a semiconductor package substrate.
    Type: Application
    Filed: March 25, 2019
    Publication date: October 1, 2020
    Inventors: Srinivas V. Pietambaram, Tarek Ibrahim, Kristof Darmawikarta, Rahul N. Manepalli, Debendra Mallik, Robert L. Sankman
  • Patent number: 10777428
    Abstract: Embodiments herein may relate to providing, on a pad coupled with a carrier panel, a sacrificial element. Embodiments may further relate to providing, on the pad, a mold compound, wherein the mold compound is at least partially adjacent to the sacrificial element. Embodiments may further relate to removing, subsequent to the providing of the mold compound, the sacrificial element to form a via in the mold compound to at least partially expose the pad. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: September 15, 2020
    Assignee: INTEL CORPORATION
    Inventors: Srinivas V. Pietambaram, Rahul N. Manepalli
  • Publication number: 20200273787
    Abstract: The present disclosure provides a substrate for an integrated circuit. The substrate includes a dielectric layer. The substrate further includes a plurality of conductive elements at least partially embedded within the dielectric layer and having a substantially smooth outer surface. The substrate further includes an interlayer disposed between the individual conductive elements and the dielectric layer. The interlayer has a first surface comprising a plurality of protrusions interlocked with the dielectric layer and a second surface adhered to the outer surface of the individual conductive elements.
    Type: Application
    Filed: June 30, 2017
    Publication date: August 27, 2020
    Inventors: Rahul N. Manepalli, Suddhasattwa Nad
  • Publication number: 20200266184
    Abstract: Techniques for a patch to couple one or more surface dies to an interposer or motherboard are provided. In an example, the patch can include multiple embedded dies. In an example, a microelectronic device can be formed to include a patch on an interposer, where the patch can include multiple embedded dies and each die can have a different thickness.
    Type: Application
    Filed: December 29, 2017
    Publication date: August 20, 2020
    Inventors: Srinivas PIETAMBARAM, Robert Alan MAY, Kristof DARMAWIKARTA, Hiroki TANAKA, Rahul N. MANEPALLI, Sri Ranga Sai BOYAPATI
  • Patent number: 10741534
    Abstract: The present description addresses example methods for forming multi-chip microelectronic devices and the resulting devices. The multiple semiconductor die of the multichip package will be attached to a solid plate with a bonding system selected to withstand stresses applied when a mold material is applied to encapsulate the die of the multichip device. The solid plate will remain as a portion of the finished multi-chip device. The solid plate can be a metal plate to function as a heat spreader for the completed multi-chip device.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: August 11, 2020
    Assignee: Intel Corporation
    Inventors: Aleksandar Aleksov, Sri Ranga Sai Boyapati, Kristof Darmawikarta, Rahul N. Manepalli, Robert Alan May, Srinivas V. Pietambaram
  • Publication number: 20200245472
    Abstract: Embodiments of the present disclosure describe techniques for providing an apparatus with a substrate provided with plasma treatment. In some instances, the apparatus may include a substrate with a surface that comprises a metal layer to provide signal routing in the apparatus. The metal layer may be provided in response to a plasma treatment of the surface with a functional group containing a gas (e.g., nitrogen-based gas), to provide absorption of a transition metal catalyst into the surface, and subsequent electroless plating of the surface with a metal. The transition metal catalyst is to enhance electroless plating of the surface with the metal. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 22, 2017
    Publication date: July 30, 2020
    Inventors: Darko GRUJICIC, Rengarajan SHANMUGAM, Sandeep GAAN, Adrian BAYRAKTAROGLU, Roy DITTLER, Ke LIU, Suddhasattwa NAD, Marcel A. WALL, Rahul N. MANEPALLI, Ravindra V. TANIKELLA
  • Patent number: 10705293
    Abstract: This document discusses, among other things, a waveguide including a first metal having an outer surface proximate a dielectric material and an inner surface defining a path of the waveguide, a method of receiving an optical signal at the inner surface of the waveguide and transmitting the optical signal along at least a portion of the path of the waveguide. A method of integrating a waveguide in a substrate includes depositing sacrificial metal on a first surface of a carrier substrate to form a core of the waveguide, depositing a first metal over the sacrificial metal and at least a portion of the first surface of the carrier substrate, forming an outer surface of the waveguide and a conductor separate from the sacrificial metal, and depositing dielectric material over the first surface of the carrier substrate about the conductor.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: July 7, 2020
    Assignee: Intel Corporation
    Inventors: Robert Alan May, Kristof Darmawikarta, Rahul Jain, Sri Ranga Sai Boyapati, Maroun Moussallem, Rahul N. Manepalli, Srinivas Pietambaram
  • Publication number: 20200211952
    Abstract: According to various embodiments of the present disclosure, a substrate for an integrated circuit includes a dielectric layer. The substrate further includes a conductive layer extending in an x or y direction. The conductive layer is at least partially embedded within the dielectric layer. The conductive layer includes a via having a first end and an opposite second end. The via has a first height in a z-direction and a constant cross-sectional shape between the first end and the second end. A trace is adjacent to the via and has a second height in the z-direction that is different than the first height.
    Type: Application
    Filed: March 10, 2020
    Publication date: July 2, 2020
    Inventors: Rahul N. Manepalli, Kousik Ganesan, Marcel Arlan Wall, Srinivas Pietambaram
  • Patent number: 10672695
    Abstract: This document discusses, among other things, a multi-layer molded substrate having layers with a graded coefficients of thermal expansions (CTEs) to optimize thermal performance of the multi-layer molded substrate with first and second structures attached to top and bottom surfaces of the multi-layer molded substrate, respectively.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: June 2, 2020
    Assignee: Intel Corporation
    Inventors: Srinivas Pietambaram, Rahul N. Manepalli
  • Patent number: 10658281
    Abstract: According to various embodiments of the present disclosure, a substrate for an integrated circuit includes a dielectric layer. The substrate further includes a conductive layer extending in an x or y direction. The conductive layer is at least partially embedded within the dielectric layer. The conductive layer includes a via having a first end and an opposite second end. The via has a first height in a z-direction and a constant cross-sectional shape between the first end and the second end. A trace is adjacent to the via and has a second height in the z-direction that is different than the first height.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: May 19, 2020
    Assignee: Intel Corporation
    Inventors: Rahul N. Manepalli, Kousik Ganesan, Marcel Arlan Wall, Srinivas Pietambaram
  • Publication number: 20200105731
    Abstract: The present description addresses example methods for forming multi-chip microelectronic devices and the resulting devices. The multiple semiconductor die of the multichip package will be attached to a solid plate with a bonding system selected to withstand stresses applied when a mold material is applied to encapsulate the die of the multichip device. The solid plate will remain as a portion of the finished multi-chip device. The solid plate can be a metal plate to function as a heat spreader for the completed multi-chip device.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Aleksandar Aleksov, Sri Ranga Sai Boyapati, Kristof Darmawikarta, Rahul N. Manepalli, Robert Alan May, Srinivas V. Pietambaram
  • Publication number: 20200098503
    Abstract: Various embodiments include, for example, a magnetic-dielectric film-based inductor that can be embedded in an electronic package for use as an integrated voltage-regulator, multiple conductive regions to provide electrical interconnects to the magnetic-dielectric-based inductor from other devices, multiple conductive pillars that are electrically coupled to and formed over at least some of the conductive regions, and a magnetic-dielectric layer formed over at least some of conductive regions and conductive pillars. The magnetic-dielectric layer is formed by a multi-layer formation technique having multiple dielectric-material layers and multiple magnetic-material layers. Each of the magnetic-material layers is interspersed with at least one of the dielectric-material layers. Other devices, apparatuses, and methods are described.
    Type: Application
    Filed: September 25, 2018
    Publication date: March 26, 2020
    Inventors: Srinivas V. Pietambaram, Kristof Darmawikarta, Rahul N. Manepalli
  • Publication number: 20200075473
    Abstract: Disclosed herein are integrated circuit (IC) package substrates formed with a dielectric bi-layer, and related devices and methods. In some embodiments, an IC package substrate is fabricated by: forming a raised feature on a conductive layer; forming a dielectric bi-layer on the conductive layer, where the dielectric bi-layer includes a first sub-layer having a first material property and a second sub-layer having a second material property, and where the top surface of the second sub-layer is substantially planar with the top surface of the raised feature; and removing the first sub-layer until the second material property is detected to reveal the conductive feature. In some embodiments, an IC package substrate is fabricated by: forming a dielectric bi-layer on a patterned conductive layer, where the first sub-layer is less susceptible to removal than the second sub-layer; forming an opening in the dielectric bi-layer; etching; and forming a via having vertical sidewalls.
    Type: Application
    Filed: May 23, 2017
    Publication date: March 5, 2020
    Applicant: Intel Corporation
    Inventors: Srinivas V. Pietambaram, Rahul N. Manepalli, David Unruh, Frank Truong, Kyu Oh Lee, Junnan Zhao, Sri Chaitra Jyotsna Chavali
  • Publication number: 20200027775
    Abstract: A die placement and coupling apparatus may include a die bonding attachment. The die placement and coupling apparatus may include a compliant head unit that may be adapted to optionally couple with a semiconductor die. The compliant head unit may include a die attach surface that may include a layer of compliant material. The layer of compliant material may be coupled to the compliant head unit. The die attach surface may be adapted to mate with the semiconductor die when the semiconductor die is coupled with the compliant head unit. The layer of compliant material may be adapted to yield in response to an applied force. The die placement and coupling apparatus may include a vacuum port in communication with the die attach surface. The port may be adapted to have a vacuum applied to the port, and the vacuum temporarily holds the semiconductor die to the die attach surface.
    Type: Application
    Filed: July 17, 2018
    Publication date: January 23, 2020
    Inventors: Jesse C. Jones, Gang Duan, Yosuke Kanaoka, Rahul N. Manepalli
  • Publication number: 20200027841
    Abstract: An electronic device includes a substrate, and the substrate may include one or more layers. The one or more layers may include a dielectric material and may include one or more electrical traces. The electronic device may include a layer of conductive material, and the layer of conductive material may define a void in the conductive material. The electronic device may include a fiducial mark, and the fiducial mark may include a filler material positioned in the void defined by the conductive material. The fiducial mark may be coupled to the layer of conductive material. The filler material may have a lower reflectivity in comparison to the conductive material, for instance to provide a contrast with the conductive material.
    Type: Application
    Filed: July 17, 2018
    Publication date: January 23, 2020
    Inventors: Jesse C. Jones, Gang Duan, Jason Gamba, Yosuke Kanaoka, Rahul N. Manepalli, Vishal Shajan
  • Publication number: 20190393172
    Abstract: Semiconductor packages having a die electrically connected to an antenna by a coaxial interconnect are described. In an example, a semiconductor package includes a molded layer between a first antenna patch and a second antenna patch of the antenna. The first patch may be electrically connected to the coaxial interconnect, and the second patch may be mounted on the molded layer. The molded layer may be formed from a molding compound, and may have a stiffness to resist warpage during fabrication and use of the semiconductor package.
    Type: Application
    Filed: March 30, 2017
    Publication date: December 26, 2019
    Inventors: Srinivas V. PIETAMBARAM, Rahul N. MANEPALLI, Kristof Kuwawi DARMAWIKARTA, Robert Alan MAY, Aleksandar ALEKSOV, Telesphor KAMGAING