Patents by Inventor Rahul N. Manepalli

Rahul N. Manepalli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10477688
    Abstract: A stretchable electronic assembly comprising a stretchable body, a plurality of electronic components encapsulated in the stretchable body, at least one meandering conductor connected to at least one electronic component of the plurality of electronic components, at least one hollow pocket formed in the stretchable body, the at least one meandering conductor encapsulated in the stretchable body and the at least one meandering conductor located within the at least one hollow pocket formed in the stretchable body.
    Type: Grant
    Filed: December 24, 2015
    Date of Patent: November 12, 2019
    Assignee: Intel Corporation
    Inventors: Aleksandar Aleksov, Srinivas V. Pietambaram, Rahul N. Manepalli
  • Publication number: 20190279935
    Abstract: Semiconductor packages including package substrates having non-homogeneous dielectric layers, and methods of fabricating such semiconductor packages, are described. In an example, a semiconductor package substrate includes a dielectric layer having a resin-rich region, e.g., a resin-rich sublayer, and a filler-rich region, e.g., a filler-rich sublayer. The sublayers may contain respective mixtures of an organic resin material and an inorganic filler material. The filler-rich sublayer may have a higher density of the inorganic filler material than the resin-rich sublayer. A density of the inorganic filler material may be lesser near a top surface of 0 the dielectric layer in which an electrical interconnect is embedded. The electrical interconnect may have a greater adhesion affinity to the organic resin material than the inorganic filler material, and thus, the electrical interconnect may readily attach to the functionally-graded dielectric layer.
    Type: Application
    Filed: December 29, 2016
    Publication date: September 12, 2019
    Inventors: David Allen UNRUH, JR., Srinivas V. PIETAMBARAM, Rahul N. MANEPALLI
  • Publication number: 20190250326
    Abstract: This document discusses, among other things, a waveguide including a first metal having an outer surface proximate a dielectric material and an inner surface defining a path of the waveguide, a method of receiving an optical signal at the inner surface of the waveguide and transmitting the optical signal along at least a portion of the path of the waveguide. A method of integrating a waveguide in a substrate includes depositing sacrificial metal on a first surface of a carrier substrate to form a core of the waveguide, depositing a first metal over the sacrificial metal and at least a portion of the first surface of the carrier substrate, forming an outer surface of the waveguide and a conductor separate from the sacrificial metal, and depositing dielectric material over the first surface of the carrier substrate about the conductor.
    Type: Application
    Filed: December 14, 2015
    Publication date: August 15, 2019
    Inventors: Robert Alan May, Kristof Darmawikarta, Rahul Jain, Sri Ranga Sai Boyapati, Maroun Moussallem, Rahul N. Manepalli, Srinivas Pietambaram
  • Publication number: 20190229082
    Abstract: Techniques and mechanisms for bonding structures of a circuit device with a monolayer. In an embodiment, a patterned metallization layer or a first dielectric layer includes a first surface portion. The first surface portion is exposed to first molecules which each include a first head group and a first end group which is substantially non-reactive with the first head group. The first head groups attach to the first portion to form a first self-assembled monolayer, which is subsequently reacted with second molecules to form a second monolayer comprising moieties of the first molecules. In another embodiment, the first head group comprises a first moiety comprising a sulfur atom or a nitrogen atom, where the first end group comprises one of an acid moiety, an acid anhydride moiety, an aliphatic alcohol moiety, an aromatic alcohol moiety, or an unsaturated hydrocarbon moiety.
    Type: Application
    Filed: April 2, 2018
    Publication date: July 25, 2019
    Applicant: Intel Corporation
    Inventors: Suddhasattwa Nad, Rahul N. Manepalli, Marcel A. Wall
  • Publication number: 20190206791
    Abstract: Disclosed is an embedded multi-die interconnect bridge (EMIB) substrate. The EMIB substrate can comprise an organic substrate, a bridge embedded in the organic substrate and a plurality of routing layers. The plurality of routing layers can be embedded within the bridge. Each routing layer can have a plurality of traces. Each of the plurality of routing layers can have a coefficient of thermal expansion (CTE) that varies from an adjacent routing layer.
    Type: Application
    Filed: July 1, 2016
    Publication date: July 4, 2019
    Inventors: Srinivas V. Pietambaram, Rahul N Manepalli
  • Publication number: 20190103348
    Abstract: According to various embodiments of the present disclosure, a substrate for an integrated circuit includes a dielectric layer. The substrate further includes a conductive layer extending in an x or y direction. The conductive layer is at least partially embedded within the dielectric layer. The conductive layer includes a via having a first end and an opposite second end. The via has a first height in a z-direction and a constant cross-sectional shape between the first end and the second end. A trace is adjacent to the via and has a second height in the z-direction that is different than the first height.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 4, 2019
    Inventors: Rahul N. Manepalli, Kousik Ganesan, Marcel Arlan Wall, Srinivas Pietambaram
  • Publication number: 20190019691
    Abstract: Embodiments herein may relate to providing, on a pad coupled with a carrier panel, a sacrificial element. Embodiments may further relate to providing, on the pad, a mold compound, wherein the mold compound is at least partially adjacent to the sacrificial element. Embodiments may further relate to removing, subsequent to the providing of the mold compound, the sacrificial element to form a via in the mold compound to at least partially expose the pad. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: February 26, 2016
    Publication date: January 17, 2019
    Inventors: Srinivas V. PIETAMBARAM, Rahul N. MANEPALLI
  • Patent number: 10170428
    Abstract: Embodiments are generally directed to cavity generation for an embedded interconnect bridge utilizing a temporary structure. An embodiment of a package includes a substrate; a silicon interconnect bridge including a plurality of interconnections, the interconnect bridge being embedded in the substrate; and a plurality of contacts on a surface of the substrate, the plurality of contacts being coupled with the plurality of interconnections of the interconnect bridge. The interconnect bridge is bonded in a cavity in the substrate, the cavity being formed by removal of at least one temporary structure from the substrate.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: January 1, 2019
    Assignee: Intel Corporation
    Inventors: Srinivas V. Pietambaram, Rahul N. Manepalli
  • Publication number: 20180366399
    Abstract: This document discusses, among other things, a multi-layer molded substrate having layers with a graded coefficients of thermal expansions (CTEs) to optimize thermal performance of the multi-layer molded substrate with first and second structures attached to top and bottom surfaces of the multi-layer molded substrate, respectively.
    Type: Application
    Filed: December 23, 2015
    Publication date: December 20, 2018
    Inventors: Srinivas Pietambaram, Rahul N. Manepalli
  • Patent number: 10080290
    Abstract: An embedded electronic package includes a stretchable body that includes at least one electronic component, wherein each electronic component includes a back side that is exposed from the stretchable body; and a plurality of meandering conductors that are electrically connected to one or more of the electronic components. In some forms, the embedded electronic package includes a stretchable body that includes an upper surface and a lower surface, wherein the stretchable body includes at least one electronic component, wherein each electronic component is fully embedded in the stretchable body and the same distance from the upper surface of the stretchable body; and a plurality of meandering conductors that are electrically connected to one or more of the electronic components.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: September 18, 2018
    Assignee: Intel Corporation
    Inventors: Aleksandar Aleksov, Srinivas Pietambaram, Rahul N. Manepalli
  • Patent number: 10043740
    Abstract: Semiconductor packages with interconnects having passivation thereon is disclosed. The passivation layer may be any suitable dielectric material that may overlie a build-up dielectric layer and metal traces of an interconnect layer in a semiconductor package. Via holes may be formed in the build-up dielectric and the passivation layer may be removed from the bottom of the via hole. By removing the passivation layer at the bottom of the via hole, any residual build-up dielectric may also be removed from the bottom of the via hole. Thus removal of the residual build-up dielectric may not require a desmear process that would otherwise roughen metal and/or dielectric surfaces. The resulting smoother metal and/or dielectric surfaces enabled by the use of the passivation layer may allow greater process latitude and/or flexibility to fabricate relatively smaller dimensional interconnect features and/or relatively improved signaling frequency and integrity.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: August 7, 2018
    Assignee: Intel Coporation
    Inventors: Sri Ranga Sai Boyapati, Rahul N. Manepalli, Dilan Seneviratne, Srinivas V. Pietambaram, Kristof Darmawikarta, Robert Alan May, Islam A. Salama
  • Patent number: 9931820
    Abstract: This document discusses, among other things, a microelectronic system including a mold compound having a base layer and a surface layer on the base layer, and a seed layer deposited on the surface layer of the mold compound. The mold compound includes a monomer epoxy resin, a hardener, a filler material, and a polymer interphase material, wherein the polymer interphase material forms the surface layer of the mold compound having an adhesion strength to the seed layer greater than the monomer epoxy resin and hardener alone.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: April 3, 2018
    Assignee: Intel Corporation
    Inventors: Srinivas V. Pietambaram, Rahul N. Manepalli
  • Publication number: 20180019197
    Abstract: Semiconductor packages with interconnects having passivation thereon is disclosed. The passivation layer may be any suitable dielectric material that may overlie a build-up dielectric layer and metal traces of an interconnect layer in a semiconductor package. Via holes may be formed in the build-up dielectric and the passivation layer may be removed from the bottom of the via hole. By removing the passivation layer at the bottom of the via hole, any residual build-up dielectric may also be removed from the bottom of the via hole. Thus removal of the residual build-up dielectric may not require a desmear process that would otherwise roughen metal and/or dielectric surfaces. The resulting smoother metal and/or dielectric surfaces enabled by the use of the passivation layer may allow greater process latitude and/or flexibility to fabricate relatively smaller dimensional interconnect features and/or relatively improved signaling frequency and integrity.
    Type: Application
    Filed: July 12, 2016
    Publication date: January 18, 2018
    Inventors: SRI RANGA SAI BOYAPATI, RAHUL N. MANEPALLI, DILAN SENEVIRATNE, SRINIVAS V. PIETAMBARAM, KRISTOF DARMAWIKARTA, ROBERT ALAN MAY, ISLAM A. SALAMA
  • Publication number: 20180005945
    Abstract: Embodiments are generally directed to cavity generation for an embedded interconnect bridge utilizing a temporary structure. An embodiment of a package includes a substrate; a silicon interconnect bridge including a plurality of interconnections, the interconnect bridge being embedded in the substrate; and a plurality of contacts on a surface of the substrate, the plurality of contacts being coupled with the plurality of interconnections of the interconnect bridge. The interconnect bridge is bonded in a cavity in the substrate, the cavity being formed by removal of at least one temporary structure from the substrate.
    Type: Application
    Filed: June 29, 2016
    Publication date: January 4, 2018
    Inventors: Srinivas V. PIETAMBARAM, Rahul N. MANEPALLI
  • Publication number: 20170287838
    Abstract: Electrical interconnect bridge technology is disclosed. An electrical interconnect bridge can include a bridge substrate formed of a mold compound material. The electrical interconnect bridge can also include a plurality of routing layers within the bridge substrate, each routing layer having a plurality of fine line and space (FLS) traces. In addition, the electrical interconnect bridge can include a via extending through the substrate and electrically coupling at least one of the FLS traces in one of the routing layers to at least one of the FLS traces in another of the routing layers.
    Type: Application
    Filed: April 2, 2016
    Publication date: October 5, 2017
    Applicant: Intel Corporation
    Inventors: Srinivas V. Pietambaram, Rahul N. Manepalli
  • Patent number: 9716084
    Abstract: Embodiments of the present disclosure are directed to integrated circuit (IC) package assemblies with three-dimensional (3D) integration of multiple dies, as well as corresponding fabrication methods and systems incorporating such 3D IC package assemblies. A bumpless build-up layer (BBUL) package substrate may be formed on a first die, such as a microprocessor die. Laser radiation may be used to form an opening in a die backside film to expose TSV pads on the back side of the first die. A second die, such as a memory die stack, may be coupled to the first die by die interconnects formed between corresponding TSVs of the first and second dies. Underfill material may be applied to fill some or all of any remaining gap between the first and second dies, and/or an encapsulant may be applied over the second die and/or package substrate. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: July 25, 2017
    Assignee: INTEL CORPORATION
    Inventors: Digvijay A. Raorane, Yonggang Li, Rahul N. Manepalli, Javier Soto Gonzalez
  • Publication number: 20170188464
    Abstract: A stretchable electronic assembly comprising a stretchable body, a plurality of electronic components encapsulated in the stretchable body, at least one meandering conductor connected to at least one electronic component of the plurality of electronic components, at least one hollow pocket formed in the stretchable body, the at least one meandering conductor encapsulated in the stretchable body and the at least one meandering conductor located within the at least one hollow pocket formed in the stretchable body.
    Type: Application
    Filed: December 24, 2015
    Publication date: June 29, 2017
    Applicant: Intel Corporation
    Inventors: Aleksandar Aleksov, Srinivas V. Pietambaram, Rahul N. Manepalli
  • Publication number: 20170173925
    Abstract: This document discusses, among other things, a microelectronic system including a mold compound having a base layer and a surface layer on the base layer, and a seed layer deposited on the surface layer of the mold compound. The mold compound includes a monomer epoxy resin, a hardener, a filler material, and a polymer interphase material, wherein the polymer interphase material forms the surface layer of the mold compound having an adhesion strength to the seed layer greater than the monomer epoxy resin and hardener alone.
    Type: Application
    Filed: December 21, 2015
    Publication date: June 22, 2017
    Inventors: Srinivas V. Pietambaram, Rahul N. Manepalli
  • Publication number: 20170142839
    Abstract: An embedded electronic package includes a stretchable body that includes at least one electronic component, wherein each electronic component includes a back side that is exposed from the stretchable body; and a plurality of meandering conductors that are electrically connected to one or more of the electronic components. In some forms, the embedded electronic package includes a stretchable body that includes an upper surface and a lower surface, wherein the stretchable body includes at least one electronic component, wherein each electronic component is fully embedded in the stretchable body and the same distance from the upper surface of the stretchable body; and a plurality of meandering conductors that are electrically connected to one or more of the electronic components.
    Type: Application
    Filed: November 17, 2015
    Publication date: May 18, 2017
    Inventors: Aleksandar Aleksov, Srinivas Pietambaram, Rahul N. Manepalli
  • Publication number: 20160322344
    Abstract: Embodiments of the present disclosure are directed to integrated circuit (IC) package assemblies with three-dimensional (3D) integration of multiple dies, as well as corresponding fabrication methods and systems incorporating such 3D IC package assemblies. A bumpless build-up layer (BBUL) package substrate may be formed on a first die, such as a microprocessor die. Laser radiation may be used to form an opening in a die backside film to expose TSV pads on the back side of the first die. A second die, such as a memory die stack, may be coupled to the first die by die interconnects formed between corresponding TSVs of the first and second dies. Underfill material may be applied to fill some or all of any remaining gap between the first and second dies, and/or an encapsulant may be applied over the second die and/or package substrate. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: July 12, 2016
    Publication date: November 3, 2016
    Inventors: Digvijay A. Raorane, Yonggang Li, Rahul N. Manepalli, Javier Soto Gonzalez