Patents by Inventor Rajeev Kumar

Rajeev Kumar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11790969
    Abstract: Endurance mechanisms are introduced for memories such as non-volatile memories for broad usage including caches, last-level cache(s), embedded memory, embedded cache, scratchpads, main memory, and storage devices. Here, non-volatile memories (NVMs) include magnetic random-access memory (MRAM), resistive RAM (ReRAM), ferroelectric RAM (FeRAM), phase-change memory (PCM), etc. In some cases, features of endurance mechanisms (e.g., randomizing mechanisms) are applicable to volatile memories such as static random-access memory (SRAM), and dynamic random-access memory (DRAM). The endurance mechanisms include a wear leveling scheme that uses index rotation, outlier compensation to handle weak bits, and random swap injection to mitigate wear out attacks.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: October 17, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Christopher B. Wilkerson, Sasikanth Manipatruni, Rajeev Kumar Dokania, Amrita Mathuriya
  • Publication number: 20230320347
    Abstract: Mismanagement of infectious wastes such as test samples leads to the transmission of microbes/toxins/viruses and spread of contagious and infectious diseases. Adding a flocculating agent to liquid waste reduces the risk of spills and aerosolization. Provide is a flocculating/gelating agent comprising the sol of a selected nanomaterial with a defined weight composition in water and a poly-amino acid (polyglutamic acid), that is capable of instantaneous flocculation/gelation, thereby disinfecting both liquid as well as solid samples, rendering them non-infectious, with >99.9% microbial disinfection. Segregation, transportation and incineration of such disinfected medical wastes are easier, safer and decrease medical waste disposal costs for a healthcare facility.
    Type: Application
    Filed: January 13, 2021
    Publication date: October 12, 2023
    Inventors: Sreejith SHANKAR POOPPANAL, Hareesh UNNIKRISHNAN NAIR SARASWATHY, Binod PARAMESWARAN, Rajeev Kumar SUKUMARAN, Ayyappanpillai AJAYAGHOSH
  • Publication number: 20230327972
    Abstract: In one embodiment, network node-to-node connectivity verification is performed in a network including data path processing of packets within a packet switching device. In one embodiment, an echo request connectivity test packet, emulating an echo request connectivity test packet received from a first connected network node, is inserted by the packet switching device prior in its data processing path prior to ingress processing performed for packets received from the first connected network node. A correspondingly received echo reply connectivity test packet is intercepted by the packet switching device during data path egress processing performed for packets to be forwarded to the first connected network node.
    Type: Application
    Filed: June 14, 2023
    Publication date: October 12, 2023
    Inventors: Rajagopal Venkatraman, Rajeev Kumar, Roberto Mitsuo Kobo, Vikash Agarwal
  • Patent number: 11785782
    Abstract: A process integration and patterning flow used to pattern a memory array area for an embedded memory without perturbing a fabricating process for logic circuitries. The fabrication process uses a pocket mask (e.g., a hard mask) to decouple the etching process of a memory array area and non-memory area. Such decoupling allows for a simpler fabrication process with little to no impact on the current fabrication process. The fabrication process may use multiple pocket masks to decouple the etching process of the memory array area and the non-memory area. This fabrication process (using multiple pocket masks) allows to avoid exposure of memory material into a second pocket etch chamber. The process of etching memory material is decoupled from the process of etching an encapsulation material. Examples of embedded memory include dynamic random-access memory and ferroelectric random-access memory.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: October 10, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Noriyuki Sato, Tanay Gosavi, Niloy Mukherjee, Rajeev Kumar Dokania, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11782944
    Abstract: Techniques are disclosed relating to providing data views from a time-series data lake to a data warehousing system. In various embodiments, the disclosed techniques include providing, by a cloud-based service, a data lake service that maintains a time-series data lake storing a time-series representation of data from a plurality of data sources associated with a first organization. In some embodiments, the cloud-based service may receive additional backup data, including a first backup image of a first data source, associated with the first organization as part of a backup operation. The cloud-based service may then store a logical backup of the first data source in the data lake and, in response to a query from a data warehousing system, the cloud-based service may retrieve a particular view of the backup data from the data lake and provide it to the data warehousing system.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: October 10, 2023
    Assignee: Clumio, Inc.
    Inventors: Abdul Jabbar Abdul Rasheed, Woonho Jung, Xia Hua, Douglas Qian, Rajeev Kumar, Lawrence Chang, Karan Dhabalia, John Stewart, Rolland Miller
  • Patent number: 11784164
    Abstract: Described is a packaging technology to improve performance of an AI processing system. An IC package is provided which comprises: a substrate; a first die on the substrate, and a second die stacked over the first die. The first die includes memory and the second die includes computational logic. The first die comprises DRAM having bit-cells. The memory of the first die may store input data and weight factors. The computational logic of the second die is coupled to the memory of the first die. In one example, the second die is an inference die that applies fixed weights for a trained model to an input data to generate an output. In one example, the second die is a training die that enables learning of the weights. Ultra high-bandwidth is changed by placing the first die below the second die. The two dies are wafer-to-wafer bonded or coupled via micro-bumps.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: October 10, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Rajeev Kumar Dokania, Sasikanth Manipatruni, Amrita Mathuriya, Debo Olaosebikan
  • Publication number: 20230319716
    Abstract: Methods, systems, and devices for wireless communications are described. A user equipment (UE) may perform a first scan procedure for a first of radio frequency bands according to a default scanning order at a first subscription of the UE, store an indication of a subset of radio frequency bands of the first set of radio frequency bands for the first scan procedure, and perform a second scan procedure for a second set of radio frequency bands according to a modified scanning order based on the stored indication of the subset of radio frequency bands. In some cases, the UE may determine a relevance of the stored indication of the subset of radio frequency bands of the first set of radio frequency bands and determine the modified scanning order based on the relevance of the stored indication.
    Type: Application
    Filed: May 7, 2021
    Publication date: October 5, 2023
    Inventors: Ansah Ahmed SHEIK, Daniel AMERGA, Sayak SAHA, Rajeev KUMAR
  • Patent number: 11777504
    Abstract: A low power sequential circuit (e.g., latch) uses a non-linear polar capacitor to retain charge with fewer transistors than traditional CMOS sequential circuits. In one example, a sequential circuit includes pass-gates and inverters, but without a feedback mechanism or memory element. In another example, a sequential uses load capacitors (e.g., capacitors coupled to a storage node and a reference supply). The load capacitors are implemented using ferroelectric material, paraelectric material, or linear dielectric. In one example, a sequential uses minority, majority, or threshold gates with ferroelectric or paraelectric capacitors. In one example, a sequential circuit uses minority, majority, or threshold gates configured as NAND gates.
    Type: Grant
    Filed: November 29, 2022
    Date of Patent: October 3, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Amrita Mathuriya, Ikenna Odinaka, Rajeev Kumar Dokania, Rafael Rios, Sasikanth Manipatruni
  • Patent number: 11778527
    Abstract: Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive, from a master node associated with a primary cell, a configuration for a conditional procedure for adding or changing a primary secondary cell (PSCell) associated with a secondary node. The UE may also receive, from the master node, a configuration for a handover procedure for the primary cell. The UE may transmit a report that includes information related to the conditional PSCell procedure, information related to the primary secondary cell, or both, based on a triggering order between the conditional PSCell procedure and the handover procedure.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: October 3, 2023
    Assignee: QUALCOMM Incorporated
    Inventors: Rajeev Kumar, Punyaslok Purkayastha, Shankar Krishnan, Xipeng Zhu, Ozcan Ozturk, Aziz Gholmieh
  • Publication number: 20230308102
    Abstract: An adder with first and second majority gates. For a 1-bit adder, output from a 3-input majority gate is inverted and input two times to a 5-input majority gate. Other inputs to the 5-input majority gate are same as those of the 3-input majority gate. The output of the 5-input majority gate is a sum while the output of the 3-input majority gate is the carry. Multiple 1-bit adders are concatenated to form an N-bit adder. The input signals are driven to first terminals of non-ferroelectric capacitors while the second terminals are coupled to form a majority node. Majority function of the input signals occurs on this node. The majority node is then coupled to a first terminal of a non-linear polar capacitor. The second terminal of the capacitor provides the output of the logic gate. A reset mechanism initializes the non-linear polar capacitor before addition function is performed.
    Type: Application
    Filed: May 18, 2023
    Publication date: September 28, 2023
    Applicant: Kepler Computing, Inc.
    Inventors: Sasikanth Manipatruni, Yuan-Sheng Fang, Robert Menezes, Rajeev Kumar Dokania, Guarav Thareja, Ramamoorthy Ramesh, Amrita Mathuriya
  • Patent number: 11770936
    Abstract: To compensate switching of a dielectric component of a non-linear polar material based capacitor, an explicit dielectric capacitor is added to a memory bit-cell and controlled by a signal opposite to the signal driven on a plate-line.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: September 26, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Rajeev Kumar Dokania, Noriyuki Sato, Tanay Gosavi, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11769790
    Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: September 26, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, Fnu Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Patent number: 11769543
    Abstract: A memory is provided which comprises a capacitor including non-linear polar material. The capacitor may have a first terminal coupled to a node (e.g., a storage node) and a second terminal coupled to a plate-line. The capacitors can be a planar capacitor or non-planar capacitor (also known as pillar capacitor). The memory includes a transistor coupled to the node and a bit-line, wherein the transistor is controllable by a word-line, wherein the plate-line is parallel to the bit-line. The memory includes a refresh circuitry to refresh charge on the capacitor periodically or at a predetermined time. The refresh circuit can utilize one or more of the endurance mechanisms. When the plate-line is parallel to the bit-line, a specific read and write scheme may be used to reduce the disturb voltage for unselected bit-cells. A different scheme is used when the plate-line is parallel to the word-line.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: September 26, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Rajeev Kumar Dokania, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11768648
    Abstract: There is provided a system and for simultaneously displaying multiple graphical user interfaces via the same display. The multiple graphical user interfaces are hosted by one or more remote host controllers. A user device is in operative communication with the one or more remote host controllers and comprises an interface display for displaying one or more of the multiple graphical user interfaces. A system controller is in operative communication with the user display device. The system controller has a processor with an associated memory of processor executable code that when executed provides the controller with performing computer-implementable steps comprising separating the interface display in two or more interface display portions and selectively providing for two or more of the graphical user interfaces to be simultaneously displayed via respective ones of the two or more interface display portions.
    Type: Grant
    Filed: September 23, 2022
    Date of Patent: September 26, 2023
    Assignee: APP-POP-UP INC.
    Inventors: Rajeev Kumar, Rakesh Kumar
  • Publication number: 20230297875
    Abstract: Disclosed are systems and techniques for wireless communications. For instance, a network entity can determine a first data heterogeneity level associated with input data for training a machine learning model. In some cases, the network entity can determine, based on the first data heterogeneity level, a first data aggregation period for training the machine learning model. In some aspects, the network entity may obtain a first set of updated model parameters from a first client device and a second set of updated model parameters from a second client device, wherein the first set of updated model parameters and the second set of updated model parameters are based on the first data aggregation period. In some examples, the network entity can combine the first set of updated model parameters and the second set of updated model parameters to yield a first combined set of updated model parameters.
    Type: Application
    Filed: March 16, 2022
    Publication date: September 21, 2023
    Inventors: Eren BALEVI, Taesang YOO, Rajeev KUMAR, Shankar KRISHNAN, Aziz GHOLMIEH, Xipeng ZHU
  • Publication number: 20230301113
    Abstract: A device structure comprises a first conductive interconnect, an electrode structure on the first conductive interconnect, an etch stop layer laterally surrounding the electrode structure; a plurality of memory devices above the electrode structure, where individual ones of the plurality of memory devices comprise a dielectric layer comprising a perovskite material. The device structure further comprises a plate electrode coupled between the plurality of memory devices and the electrode structure, where the plate electrode is in direct contact with a respective lower most conductive layer of the individual ones of the plurality of memory devices. The device structure further includes an insulative hydrogen barrier layer on at least a sidewall of the individual ones of the plurality of memory devices; and a plurality of via electrodes, wherein individual ones of the plurality of via electrodes are on a respective one of the individual ones of the plurality of memory devices.
    Type: Application
    Filed: March 18, 2022
    Publication date: September 21, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Noriyuki Sato, Tanay Gosavi, Rafael Rios, Amrita Mathuriya, Niloy Mukherjee, Mauricio Manfrini, Rajeev Kumar Dokania, Somilkumar J. Rathi, Sasikanth Manipatruni
  • Publication number: 20230298905
    Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.
    Type: Application
    Filed: February 1, 2022
    Publication date: September 21, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, FNU Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Patent number: 11765909
    Abstract: A process integration and patterning flow used to pattern a memory array area for an embedded memory without perturbing a fabricating process for logic circuitries. The fabrication process uses a pocket mask (e.g., a hard mask) to decouple the etching process of a memory array area and non-memory area. Such decoupling allows for a simpler fabrication process with little to no impact on the current fabrication process. The fabrication process may use multiple pocket masks to decouple the etching process of the memory array area and the non-memory area. This fabrication process (using multiple pocket masks) allows to avoid exposure of memory material into a second pocket etch chamber. The process of etching memory material is decoupled from the process of etching an encapsulation material. Examples of embedded memory include dynamic random-access memory and ferroelectric random-access memory.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: September 19, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Noriyuki Sato, Tanay Gosavi, Niloy Mukherjee, Rajeev Kumar Dokania, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11765908
    Abstract: A method of fabricating a device comprises forming a multi-layer stack above a first substrate, where multi-layer stack includes a non-linear polar material. In at least one embodiment, method further includes forming a first conductive layer on multi-layer stack and annealing multi-layer stack. A transistor is formed above a second substrate. In at least one embodiment, method also includes forming a second conductive layer above electrode structure and bonding first conductive layer with second conductive layer. After bonding, method includes removing at least a portion of first substrate patterning multi-layer stack to form a memory device.
    Type: Grant
    Filed: February 10, 2023
    Date of Patent: September 19, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Mauricio Manfrini, Noriyuki Sato, James David Clarkson, Abel Fernandez, Somilkumar J. Rathi, Niloy Mukherjee, Tanay Gosavi, Amrita Mathuriya, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Patent number: 11764790
    Abstract: A new class of logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates. Input signals in the form of digital signals are driven to non-linear input capacitors on their respective first terminals. The second terminals of the non-linear input capacitors are coupled a summing node which provides a majority function of the inputs. In the multi-input majority or minority gates, the non-linear charge response from the non-linear input capacitors results in output voltages close to or at rail-to-rail voltage levels. In some examples, the nodes of the non-linear input capacitors are conditioned once in a while to preserve function of the multi-input majority gates.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: September 19, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Rajeev Kumar Dokania, Amrita Mathuriya, Rafael Rios, Ikenna Odinaka, Robert Menezes, Ramamoorthy Ramesh, Sasikanth Manipatruni