Patents by Inventor Rajeev Kumar

Rajeev Kumar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230251828
    Abstract: Asynchronous full-adder circuit is described. The full-adder includes majority and/or minority gates some of which receive two first inputs (A.t, A.f), two second inputs (B.t, B.f), two carry inputs (Cin.t, Cin.f), third acknowledgement input (Cout.e), and fourth acknowledgement input (Sum.e), and generate controls to control gates of transistors, wherein the transistors are coupled to generate two carry outputs (Cout.t, Cout.e), two sum outputs (Sum.t, Sum.e), first acknowledgement output (A.e), second acknowledgement output (B.e), and third acknowledgement output (Cin.e). The majority and/or minority gates comprise CMOS gates or multi-input capacitive circuitries. The multi-input capacitive circuitries include capacitive structures that may comprise linear dielectric, paraelectric dielectric, or ferroelectric dielectric. The capacitors can be planar or non-planar. The capacitors may be stacked vertically to reduce footprint of the asynchronous full-adder circuit.
    Type: Application
    Filed: February 7, 2022
    Publication date: August 10, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Amrita Mathuriya, Nabil Imam, Ikenna Odinaka, Rafael Rios, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Patent number: 11721690
    Abstract: An apparatus and configuring scheme where a ferroelectric capacitive input circuit can be programmed to perform different logic functions by adjusting the switching threshold of the ferroelectric capacitive input circuit. Digital inputs are received by respective capacitors on first terminals of those capacitors. The second terminals of the capacitors are connected to a summing node. A pull-up and pull-down device are coupled to the summing node. The pull-up and pull-down devices are controlled separately. During a reset phase, the pull-up and pull-down devices are turned on in a sequence, and inputs to the capacitors are set to condition the voltage on node n1. As such, a threshold for the capacitive input circuit is set. After the reset phase, an evaluation phase follows. In the evaluation phase, the output of the capacitive input circuit is determined based on the inputs and the logic function configured during the reset phase.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: August 8, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Amrita Mathuriya, Rafael Rios, Ikenna Odinaka, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Publication number: 20230246063
    Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.
    Type: Application
    Filed: February 1, 2022
    Publication date: August 3, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, FNU Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Publication number: 20230247420
    Abstract: A first network node may transmit, to a second network node, first information associated with granular user consent control. The first information may be further associated with a data processing task and a UE. The second network node may receive, from the first network node or the UE, second information associated with the granular user consent control. The second information may be further associated with the data processing task and the UE. The second network node may identify a user consent result associated with the data processing task and a user of the UE based on the granular user consent control. The user consent result may be further based on the first information or the second information. The second network node may transmit, to the first network node, the user consent result. Thereafter, the first network node may handle the data processing task based on the user consent result.
    Type: Application
    Filed: January 30, 2023
    Publication date: August 3, 2023
    Inventors: Rajeev KUMAR, Olufunmilola Omolade AWONIYI-OTERI, Gavin Bernard HORN, Aziz GHOLMIEH, Soo Bum LEE, Marwen ZORGUI, Hongil KIM
  • Publication number: 20230246062
    Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.
    Type: Application
    Filed: January 31, 2022
    Publication date: August 3, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, FNU Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Publication number: 20230246064
    Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.
    Type: Application
    Filed: February 3, 2022
    Publication date: August 3, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, FNU Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Patent number: 11716085
    Abstract: Asynchronous circuits implemented using threshold gate(s) and/or majority gate(s) (or minority gate(s)) are described. The new class of asynchronous circuits can operate at lower power supply levels (e.g., less than 1V on advanced technology nodes) because stack of devices between a supply node and ground are significantly reduced compared to traditional asynchronous circuits. The asynchronous circuits here result in area reduction (e.g., 3× reduction compared to traditional asynchronous circuits) and provide higher throughput/mm2 (e.g., 2× higher throughput compared to traditional asynchronous circuits). The threshold gate(s), majority/minority gate(s) can be implemented using capacitive input circuits. The capacitors can have linear dielectric or non-linear polar material as dielectric.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: August 1, 2023
    Assignee: Kepler Computing, Inc.
    Inventors: Sasikanth Manipatruni, Nabil Imam, Ikenna Odinaka, Rafael Rios, Rajeev Kumar Dokania, Amrita Mathuriya
  • Patent number: 11716083
    Abstract: Asynchronous circuits implemented using threshold gate(s) and/or majority gate(s) (or minority gate(s)) are described. The new class of asynchronous circuits can operate at lower power supply levels (e.g., less than 1V on advanced technology nodes) because stack of devices between a supply node and ground are significantly reduced compared to traditional asynchronous circuits. The asynchronous circuits here result in area reduction (e.g., 3× reduction compared to traditional asynchronous circuits) and provide higher throughput/mm2 (e.g., 2× higher throughput compared to traditional asynchronous circuits). The threshold gate(s), majority/minority gate(s) can be implemented using capacitive input circuits. The capacitors can have linear dielectric or non-linear polar material as dielectric.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: August 1, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Nabil Imam, Ikenna Odinaka, Rafael Rios, Rajeev Kumar Dokania, Amrita Mathuriya
  • Patent number: 11716086
    Abstract: Asynchronous circuits implemented using threshold gate(s) and/or majority gate(s) (or minority gate(s)) are described. The new class of asynchronous circuits can operate at lower power supply levels (e.g., less than 1V on advanced technology nodes) because stack of devices between a supply node and ground are significantly reduced compared to traditional asynchronous circuits. The asynchronous circuits here result in area reduction (e.g., 3× reduction compared to traditional asynchronous circuits) and provide higher throughput/mm2 (e.g., 2× higher throughput compared to traditional asynchronous circuits). The threshold gate(s), majority/minority gate(s) can be implemented using capacitive input circuits. The capacitors can have linear dielectric or non-linear polar material as dielectric.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: August 1, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Nabil Imam, Ikenna Odinaka, Rafael Rios, Rajeev Kumar Dokania, Amrita Mathuriya
  • Patent number: 11716084
    Abstract: Asynchronous circuits implemented using threshold gate(s) and/or majority gate(s) (or minority gate(s)) are described. The new class of asynchronous circuits can operate at lower power supply levels (e.g., less than 1V on advanced technology nodes) because stack of devices between a supply node and ground are significantly reduced compared to traditional asynchronous circuits. The asynchronous circuits here result in area reduction (e.g., 3× reduction compared to traditional asynchronous circuits) and provide higher throughput/mm2 (e.g., 2× higher throughput compared to traditional asynchronous circuits). The threshold gate(s), majority/minority gate(s) can be implemented using capacitive input circuits. The capacitors can have linear dielectric or non-linear polar material as dielectric.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: August 1, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Nabil Imam, Ikenna Odinaka, Rafael Rios, Rajeev Kumar Dokania, Amrita Mathuriya
  • Publication number: 20230236784
    Abstract: There is provided a system for modulating a graphical user interface (GUI). The system comprising a user device and a system controller in communication therewith. The user device comprises a device controller and a display interface for displaying the GUI. Execution of processor executable code stored in the system controller or provided for storage in the user device by the system controller or by the device controller or by the combination thereof synergistically provides for the system controller or the device controller or the combination thereof with performing computer-implementable steps. The computer implementable steps comprise splitting the GUI into two or more sub-GUI portions positioned within the GUI frame boundary and providing for the two or more sub-GUI portions to simultaneously display respective content stored within the user device and/or hosted by the system controller and/or a same or different remote host controllers in communication with the user device.
    Type: Application
    Filed: March 28, 2023
    Publication date: July 27, 2023
    Inventors: Rajeev KUMAR, Rakesh KUMAR
  • Publication number: 20230239921
    Abstract: Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for channel access for wireless communications, for example, in unlicensed frequency bands. In some cases, a UE may log information associated with channel access failures on one or more frequency bands in shared spectrum and provide the information to a network entity.
    Type: Application
    Filed: June 8, 2021
    Publication date: July 27, 2023
    Inventors: Rajeev KUMAR, Ozcan OZTURK, Pravjyot Singh DEOGUN, Shankar KRISHNAN, Xipeng ZHU, Gavin Bernard HORN
  • Patent number: 11711083
    Abstract: An adder with first and second majority gates. For a 1-bit adder, output from a 3-input majority gate is inverted and input two times to a 5-input majority gate. Other inputs to the 5-input majority gate are same as those of the 3-input majority gate. The output of the 5-input majority gate is a sum while the output of the 3-input majority gate is the carry. Multiple 1-bit adders are concatenated to form an N-bit adder. The input signals are driven to first terminals of non-ferroelectric capacitors while the second terminals are coupled to form a majority node. Majority function of the input signals occurs on this node. The majority node is then coupled to a first terminal of a non-linear polar capacitor. The second terminal of the capacitor provides the output of the logic gate. A reset mechanism initializes the non-linear polar capacitor before addition function is performed.
    Type: Grant
    Filed: March 8, 2022
    Date of Patent: July 25, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Yuan-Sheng Fang, Robert Menezes, Rajeev Kumar Dokania, Guarav Thareja, Ramamoorthy Ramesh, Amrita Mathuriya
  • Patent number: 11705905
    Abstract: An apparatus and configuring scheme where a ferroelectric capacitive input circuit can be programmed to perform different logic functions by adjusting the switching threshold of the ferroelectric capacitive input circuit. Digital inputs are received by respective capacitors on first terminals of those capacitors. The second terminals of the capacitors are connected to a summing node. A pull-up and pull-down device are coupled to the summing node. The pull-up and pull-down devices are controlled separately. During a reset phase, the pull-up and pull-down devices are turned on in a sequence, and inputs to the capacitors are set to condition the voltage on node n1. As such, a threshold for the capacitive input circuit is set. After the reset phase, an evaluation phase follows. In the evaluation phase, the output of the capacitive input circuit is determined based on the inputs and the logic function configured during the reset phase.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: July 18, 2023
    Assignee: Kepler Computing, Inc.
    Inventors: Amrita Mathuriya, Rafael Rios, Ikenna Odinaka, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Patent number: 11705906
    Abstract: A new class of logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates. Input signals in the form of digital signals are driven to non-linear input capacitors on their respective first terminals. The second terminals of the non-linear input capacitors are coupled a summing node which provides a majority function of the inputs. In the multi-input majority or minority gates, the non-linear charge response from the non-linear input capacitors results in output voltages close to or at rail-to-rail voltage levels. In some examples, the nodes of the non-linear input capacitors are conditioned once in a while to preserve function of the multi-input majority gates.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: July 18, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Amrita Mathuriya, Rafael Rios, Ikenna Odinaka, Robert Menezes, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Publication number: 20230223936
    Abstract: Asynchronous circuit elements are described. Asynchronous circuit elements include a consensus element (c-element), completion tree, and validity tree. The c-element is implemented using adjustable threshold based multi-input capacitive circuitries. The completion tree comprises a plurality of c-elements organized in a tree formation. The validity tree comprises OR gates followed by c-elements. The multi-input capacitive circuitries include capacitive structures that may comprise linear dielectric, paraelectric dielectric, or ferroelectric dielectric. The capacitors can be planar or non-planar. The capacitors may be stacked vertically to reduce footprint of the various asynchronous circuitries.
    Type: Application
    Filed: January 14, 2022
    Publication date: July 13, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Amrita Mathuriya, Nabil Imam, Ikenna Odinaka, Rafael Rios, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Publication number: 20230217929
    Abstract: Whole cell based biostimulant compositions and methods for improving agricultural productivity the compositions including: a microbial consortium having gammaproteobacterial methanotroph. As a result of these methanotrophs, the biostimulant composition enables plant performance improvement, utilization of methane, and facilitates improved nitrogen fixation in plants. The composition also helps in reducing the need of external chemical fertilizers for plant growth, development, performance and/or survival.
    Type: Application
    Filed: May 28, 2021
    Publication date: July 13, 2023
    Applicant: STRING BIO PRIVATE LIMITED
    Inventors: Rajeev Kumar SARMA, Uday Kashinath AVALAKKI, Ravindra Babu BONDALAKUNTA, Prashanth Muralidhar UDAGATTI, Vinod Munisanjeevaiah Lakshmi KUMAR, Ezhilkani SUBBIAN, Pavithra GJ
  • Publication number: 20230217930
    Abstract: The present disclosure relates to protein hydrolysate based biostimulant composition derived from methanotrophic bacteria, and methods for enhancing agricultural productivity. In particular, the compositions disclosed herein comprise a protein-derived component in an amount of about 30% or less with respect to weight of the composition, wherein said protein-derived component is obtained from a methanotrophic bacterium. The present biostimulant composition finds applications in methods for improving plant performance along with methods for reducing the need of external chemical fertilizer-based inputs for plant growth.
    Type: Application
    Filed: May 28, 2021
    Publication date: July 13, 2023
    Inventors: Rajeev KUMAR SARMA, Uday KASHINATH AVALAKKI, Ravindra BABU BONDALAKUNTA, Prashanth MURALIDHAR UDAGATTI, Vinod MUNISANJEEVAIAH LAKSHMI DEVI KUMAR, Ezhilkani SUBBIAN, Pavithra GJ, Ram SARAN CHAURASIYA
  • Patent number: 11699699
    Abstract: An apparatus and configuring scheme where a ferroelectric capacitive input circuit can be programmed to perform different logic functions by adjusting the switching threshold of the ferroelectric capacitive input circuit. Digital inputs are received by respective capacitors on first terminals of those capacitors. The second terminals of the capacitors are connected to a summing node. A pull-up and pull-down device are coupled to the summing node. The pull-up and pull-down devices are controlled separately. During a reset phase, the pull-up and pull-down devices are turned on in a sequence, and inputs to the capacitors are set to condition the voltage on node n1. As such, a threshold for the capacitive input circuit is set. After the reset phase, an evaluation phase follows. In the evaluation phase, the output of the capacitive input circuit is determined based on the inputs and the logic function configured during the reset phase.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: July 11, 2023
    Assignee: Kepler Computing, Inc.
    Inventors: Amrita Mathuriya, Rafael Rios, Ikenna Odinaka, Rajeev Kumar Dokania, Debo Olaosebikan, Sasikanth Manipatruni
  • Publication number: 20230214758
    Abstract: Various implementations for an automatic system and processes for monitoring the use of personal protective equipment in a work space are provided. The system includes barcodes attached to the personal protective equipment. The operation of the system involves capturing images of the work space and detecting human form objects and barcode objects in the images. The system and processes further involve calculating the probability that a user is wearing all personal protective equipment in accordance with safety rules applicable to the work space. In some implementations, the system and processes may be used to track personal protective equipment and other objects in a work space. Accordingly, the system and processes may be used to prevent or limit the occurrence of accidents, incidents and/or injuries in hazardous work environments.
    Type: Application
    Filed: June 4, 2021
    Publication date: July 6, 2023
    Inventors: Charles Alfred Bean, David Allen Black, Rajeev Kumar Bakshi