Patents by Inventor SEAN T. MA
SEAN T. MA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11469323Abstract: Techniques are disclosed for an integrated circuit including a ferroelectric gate stack including a ferroelectric layer, an interfacial oxide layer, and a gate electrode. The ferroelectric layer can be voltage activated to switch between two ferroelectric states. Employing such a ferroelectric layer provides a reduction in leakage current in an off-state and provides an increase in charge in an on-state. The interfacial oxide layer can be formed between the ferroelectric layer and the gate electrode. Alternatively, the ferroelectric layer can be formed between the interfacial oxide layer and the gate electrode.Type: GrantFiled: September 25, 2018Date of Patent: October 11, 2022Assignee: Intel CorporationInventors: Gilbert Dewey, Willy Rachmady, Jack T. Kavalieros, Cheng-Ying Huang, Matthew V. Metz, Sean T. Ma, Harold Kennel, Tahir Ghani
-
Patent number: 11450736Abstract: Disclosed herein are source/drain regions in integrated circuit (IC) structures, as well as related methods and components. For example, in some embodiments, an IC structure may include: an array of channel regions, including a first channel region and an adjacent second channel region; a first source/drain region proximate to the first channel region; a second source/drain region proximate to the second channel region; and an insulating material region at least partially between the first source/drain region and the second source/drain region.Type: GrantFiled: March 25, 2020Date of Patent: September 20, 2022Assignee: Intel CorporationInventors: Sean T. Ma, Andy Chih-Hung Wei, Guillaume Bouche
-
Patent number: 11450738Abstract: Disclosed herein are source/drain regions in integrated circuit (IC) structures, as well as related methods and components. For example, in some embodiments, an IC structure may include: a channel region including a first semiconductor wire and a second semiconductor wire; and a source/drain region proximate to the channel region, wherein the source/drain region includes a first semiconductor portion proximate to an end of the first semiconductor wire, the source/drain region includes a second semiconductor portion proximate to an end of the second semiconductor wire, and the source/drain region includes a contact metal at least partially between the first semiconductor portion and the second semiconductor portion.Type: GrantFiled: March 27, 2020Date of Patent: September 20, 2022Assignee: Intel CorporationInventors: Sean T. Ma, Anand S. Murthy, Glenn A. Glass, Biswajeet Guha
-
Patent number: 11444159Abstract: An electronic device comprises a channel layer on a buffer layer on a substrate. The channel layer has a first portion and a second portion adjacent to the first portion. The first portion comprises a first semiconductor. The second portion comprises a second semiconductor that has a bandgap greater than a bandgap of the first semiconductor.Type: GrantFiled: June 30, 2017Date of Patent: September 13, 2022Assignee: Intel CorporationInventors: Sean T. Ma, Gilbert Dewey, Willy Rachmady, Matthew V. Metz, Cheng-Ying Huang, Harold W. Kennel, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
-
Patent number: 11444204Abstract: Techniques and mechanisms for improved performance characteristics of a transistor device. In an embodiment, a transistor of an integrated circuit comprises a source, a drain, a gate, a gate dielectric and a semiconductor structure which adjoins the gate dielectric. The semiconductor structure is configured to provide a conductive channel between the source and drain. The semiconductor structure includes first, second and third portions, the second portion between the source and the gate, and the third portion between the drain and the gate, wherein the first portion connects the second portion and third portion to one another. A thickness of the first portion is less than another thickness of one of the second portion or the third portion. In another embodiment, the locations of thicker portions of semiconductor structure mitigate overall transistor capacitance, while a thinner intermediary portion of the semiconductor structure promotes good sub-threshold swing characteristics.Type: GrantFiled: March 28, 2018Date of Patent: September 13, 2022Assignee: Intel CorporationInventors: Abhishek A. Sharma, Van H. Le, Sean T. Ma, Jack Kavalieros, Benjamin Chu-Kung
-
Patent number: 11430866Abstract: Discussed herein is device contact sizing in integrated circuit (IC) structures. In some embodiments, an IC structure may include: a first source/drain (S/D) contact in contact with a first S/D region, and a second S/D contact in contact with a second S/D region, wherein the first S/D region and the second S/D region have a same length, and the first S/D contact and the second S/D contact have different lengths.Type: GrantFiled: March 26, 2020Date of Patent: August 30, 2022Assignee: Intel CorporationInventors: Guillaume Bouche, Andy Chih-Hung Wei, Sean T. Ma
-
Patent number: 11424335Abstract: Group III-V semiconductor devices having dual workfunction gate electrodes and their methods of fabrication are described. In an example, an integrated circuit structure includes a gallium arsenide layer on a substrate. A channel structure is on the gallium arsenide layer. The channel structure includes indium, gallium and arsenic. A source structure is at a first end of the channel structure and a drain structure is at a second end of the channel structure. A gate structure is over the channel structure, the gate structure having a first workfunction material laterally adjacent a second workfunction material. The second workfunction material has a different workfunction than the first workfunction material.Type: GrantFiled: September 26, 2017Date of Patent: August 23, 2022Assignee: Intel CorporationInventors: Sean T. Ma, Willy Rachmady, Gilbert Dewey, Cheng-Ying Huang, Dipanjan Basu
-
Publication number: 20220231121Abstract: Disclosed herein are isolation regions in integrated circuit (IC) structures, as well as related methods and components. For example, in some embodiments, an IC component may include: a first region including silicon; a second region including alternating layers of a second material and a third material, wherein the second material includes silicon and germanium, the third material includes silicon, and individual ones of the layers in the second region has a thickness that is less than 3 nanometers; and a third region including alternating layers of the second material and the third material, wherein individual ones of the layers in the third region has a thickness that is greater than 3 nanometers, and the second region is between the first region and the third region.Type: ApplicationFiled: April 6, 2022Publication date: July 21, 2022Applicant: Intel CorporationInventors: Guillaume Bouche, Sean T. Ma, Andy Chih-Hung Wei
-
Patent number: 11367789Abstract: A buffer layer is deposited on a substrate. A first III-V semiconductor layer is deposited on the buffer layer. A second III-V semiconductor layer is deposited on the first III-V semiconductor layer. The second III-V semiconductor layer comprises a channel portion and a source/drain portion. The first III-V semiconductor layer acts as an etch stop layer to etch a portion of the second III-V semiconductor layer to form the source/drain portion.Type: GrantFiled: September 26, 2016Date of Patent: June 21, 2022Assignee: Intel CorporationInventors: Cheng-Ying Huang, Willy Rachmady, Matthew V. Metz, Gilbert Dewey, Jack T. Kavalieros, Sean T. Ma, Harold Kennel
-
Patent number: 11362188Abstract: An apparatus is provided which comprises: a source and a drain with a channel region therebetween, the channel region comprising a semiconductor material, and a gate dielectric layer over at least a portion of the channel region, wherein the gate dielectric layer comprises a first thickness proximate to the source and a second thickness proximate to the drain, wherein the second thickness is greater than the first thickness, and wherein at least a portion of the gate dielectric layer comprises a linearly varying thickness over the channel region. Other embodiments are also disclosed and claimed.Type: GrantFiled: December 27, 2017Date of Patent: June 14, 2022Assignee: Intel CorporationInventors: Dipanjan Basu, Sean T. Ma, Willy Rachmady, Jack T. Kavalieros
-
Patent number: 11362215Abstract: Described is a thin film transistor which comprises: a dielectric comprising a dielectric material; a first structure adjacent to the dielectric, the first structure comprising a first material; a second structure adjacent to the first structure, the second structure comprising a second material wherein the second material is doped; a second dielectric adjacent to the second structure; a gate comprising a metal adjacent to the second dielectric; a spacer partially adjacent to the gate and the second dielectric; and a contact adjacent to the spacer.Type: GrantFiled: March 30, 2018Date of Patent: June 14, 2022Assignee: INTEL CORPORATIONInventors: Abhishek A. Sharma, Sean T. Ma, Van H. Le, Jack T. Kavalieros, Gilbert Dewey
-
Publication number: 20220181442Abstract: Monolithic FETs including a fin of a first semiconductor composition disposed on a sub-fin of a second composition. In some examples, an InGaAs fin is grown over GaAs sub-fin. The sub-fin may be epitaxially grown from a seeding surface disposed within a trench defined in an isolation dielectric. The sub-fin may be planarized with the isolation dielectric. The fin may then be epitaxially grown from the planarized surface of the sub-fin. A gate stack may be disposed over the fin with the gate stack contacting the planarized surface of the isolation dielectric so as to be self-aligned with the interface between the fin and sub-fin. Other embodiments may be described and/or claimed.Type: ApplicationFiled: February 22, 2022Publication date: June 9, 2022Applicant: Intel CorporationInventors: Sean T. Ma, Matthew V. Metz, Willy Rachmady, Gilbert Dewey, Chandra S. Mohapatra, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
-
Patent number: 11342409Abstract: Disclosed herein are isolation regions in integrated circuit (IC) structures, as well as related methods and components. For example, in some embodiments, an IC component may include: a first region including silicon; a second region including alternating layers of a second material and a third material, wherein the second material includes silicon and germanium, the third material includes silicon, and individual ones of the layers in the second region has a thickness that is less than 3 nanometers; and a third region including alternating layers of the second material and the third material, wherein individual ones of the layers in the third region has a thickness that is greater than 3 nanometers, and the second region is between the first region and the third region.Type: GrantFiled: March 25, 2020Date of Patent: May 24, 2022Assignee: Intel CorporationInventors: Guillaume Bouche, Sean T. Ma, Andy Chih-Hung Wei
-
Patent number: 11335796Abstract: Embodiments herein describe techniques, systems, and method for a semiconductor device. Embodiments herein may present a semiconductor device including a substrate, and a channel area above the substrate and including a first III-V material. A source area may be above the substrate and including a second III-V material. An interface between the channel area and the source area may include the first III-V material. The source area may include a barrier layer of a third III-V material above the substrate. A current is to flow between the source area and the channel area through the barrier layer. Other embodiments may be described and/or claimed.Type: GrantFiled: December 30, 2017Date of Patent: May 17, 2022Assignee: Intel CorporationInventors: Cheng-Ying Huang, Willy Rachmady, Matthew V. Metz, Gilbert Dewey, Sean T. Ma, Jack T. Kavalieros
-
Patent number: 11276755Abstract: Monolithic FETs including a fin of a first semiconductor composition disposed on a sub-fin of a second composition. In some examples, an InGaAs fin is grown over GaAs sub-fin. The sub-fin may be epitaxially grown from a seeding surface disposed within a trench defined in an isolation dielectric. The sub-fin may be planarized with the isolation dielectric. The fin may then be epitaxially grown from the planarized surface of the sub-fin. A gate stack may be disposed over the fin with the gate stack contacting the planarized surface of the isolation dielectric so as to be self-aligned with the interface between the fin and sub-fin. Other embodiments may be described and/or claimed.Type: GrantFiled: June 17, 2016Date of Patent: March 15, 2022Assignee: Intel CorporationInventors: Sean T. Ma, Matthew V. Metz, Willy Rachmady, Gilbert Dewey, Chandra S. Mohapatra, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
-
Publication number: 20220028972Abstract: A transistor includes a body of semiconductor material, where the body has laterally opposed body sidewalls and a top surface. A gate structure contacts the top surface of the body. A source region contacts a first one of the laterally opposed body sidewalls and a drain region contacts a second one of the laterally opposed body sidewalls. A first isolation region is under the source region and has a top surface in contact with a bottom surface of the source region. A second isolation region is under the drain region and has a top surface in contact with a bottom surface of the drain region. Depending on the transistor configuration, a major portion of the inner-facing sidewalls of the first and second isolation regions contact respective sidewalls of either a subfin structure (e.g., FinFET transistor configurations) or a lower portion of a gate structure (e.g., gate-all-around transistor configuration).Type: ApplicationFiled: October 4, 2021Publication date: January 27, 2022Inventors: Willy RACHMADY, Cheng-Ying HUANG, Matthew V. METZ, Nicholas G. MINUTILLO, Sean T. MA, Anand S. MURTHY, Jack T. KAVALIEROS, Tahir GHANI, Gilbert DEWEY
-
Publication number: 20210384307Abstract: Disclosed herein are source/drain regions in integrated circuit (IC) structures, as well as related methods and components. For example, in some embodiments, an IC structure may include: a channel region including a semiconductor material; and a source/drain region at a side face of the channel region, wherein the source/drain region includes a semiconductor portion and a contact metal, and the semiconductor portion is between the contact metal and the semiconductor material.Type: ApplicationFiled: June 3, 2020Publication date: December 9, 2021Applicant: Intel CorporationInventors: Sean T. Ma, Cory E. Weber
-
Publication number: 20210384299Abstract: Disclosed herein are non-planar transistor (e.g., nanoribbon) arrangements having asymmetric gate enclosures on at least one side. An example transistor arrangement includes a channel material shaped as a nanoribbon, and a gate stack wrapping around at least a portion of a first face of the nanoribbon, a sidewall, and a portion of a second face of the nanoribbon. Portions of the gate stack provided over the first and second faces of the nanoribbon extend in a direction parallel to the longitudinal axis of the nanoribbon for a certain distance that may be referred to as a “gate length.” A portion of the gate stack wrapping around the sidewall of the nanoribbon does not extend along the entire gate length, but, rather, extends over less than a half of the gate length, e.g., about one third of the gate length, thus making the gate enclosure on that sidewall asymmetric.Type: ApplicationFiled: June 4, 2020Publication date: December 9, 2021Applicant: Intel CorporationInventors: Sean T. Ma, Guillaume Bouche
-
Patent number: 11177255Abstract: Embodiments include a first nanowire transistor having a first source and a first drain with a first channel in between, where the first channel includes a first III-V alloy. A first gate stack is around the first channel, where a portion of the first gate stack is between the first channel and a substrate. The first gate stack includes a gate electrode metal in contact with a gate dielectric. A second nanowire transistor is on the substrate, having a second source and a second drain with a second channel therebetween, the second channel including a second III-V alloy. A second gate stack is around the second channel, where an intervening material is between the second gate stack and the substrate, the intervening material including a third III-V alloy. The second gate stack includes the gate electrode metal in contact with the gate dielectric.Type: GrantFiled: January 5, 2018Date of Patent: November 16, 2021Assignee: Intel CorporationInventors: Sean T. Ma, Willy Rachmady, Gilbert Dewey, Matthew V. Metz, Harold W. Kennel, Cheng-Ying Huang, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
-
Publication number: 20210351078Abstract: An apparatus is provided which comprises: a fin; a layer formed on the fin, the layer dividing the fin in a first section and a second section; a first device formed on the first section of the fin; and a second device formed on the second section of the fin.Type: ApplicationFiled: July 26, 2021Publication date: November 11, 2021Applicant: Intel CorporationInventors: Aaron D. Lilak, Sean T. Ma, Justin R. Weber, Patrick Morrow, Rishabh Mehandru